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CHAPTER 1

Transformation Groups

Fri Jun 16 11:30:38 2000
1.1. Introduction

1.1.1. Our spaces X are path-connected, completely regular and Hausdorff so that
the various slice theorems are valid. For covering space theory, we need and tacitly
assume that our spaces are locally path-connected and semi-simply connected.

1.1.2. A left action of a topological group G on a topological space X is a continuous
function

ϕ : G×X −→ X

such that
(i) ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G and x ∈ X,
(ii) ϕ(1, x) = x, for all x ∈ X, where 1 is the identity element of G.

We shall usually write ϕ(g, x) simply as gx, g(x), or sometimes g · x. Clearly,
each element g ∈ G can be viewed as a homeomorphism of X onto itself. We may
denote this action by (G,X,ϕ), or more simply suppress the ϕ and call X a G-
space. If X and Y are G-spaces, then a G-map is a continuous function f : X → Y
which is equivariant ; i.e., f(gx) = gf(x) for all g ∈ G and x ∈ X. If f is a G-
map and a homeomorphism, then f is called a G-equivalence or G-isomorphism
(in the relevant category). A map f : X → Y is weakly G-equivariant if there
exists a continuous automorphism αf of G such that f(gx) = αf (g)f(x), for all
g ∈ G, x ∈ X. If f is a homeomorphism, then f is a weak G-equivalence or a weak
G-isomorphism.

There is an analogous notion of a right action,

ψ : G×X −→ X

which we denote by ψ(x, g) = xg or x · g. Then ψ(x, gh) = (xg)h = xgh. Any right
G-action ψ(x, g) can be converted to a left G-action ϕ(g, x) by ϕ(x, g) = ψ(x, g−1)
and vice versa. Note that, for a reasonably nice space X (e.g., locally compact Haus-
dorff), the set of self-homeomorphisms of X becomes a topological group TOP(X)
(see section 1.2.5), and a left G-action is equivalent to having a group homomor-
phism G → TOP(X). A right G-action becomes an anti-homomorphism. We will
always assume we have a left action unless we specify otherwise.

An action (G,X,ϕ) is called a smooth action if G is a Lie group, X is a smooth
manifold, and the function ϕ is smooth.
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orbit of G through x
orbit space
orbit map
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1.1.3. If X is a G-space and x ∈ X, then

Gx = {y ∈ X : y = gx for some g ∈ G}
is called the orbit of G through x. It can be denoted by Gx, G · x or G(x).

The collection of all orbits of X forms a partition of X into disjoint sets. The
collection of orbits with the identification topology (i.e., quotient topology) is called
the orbit space of the G-action on X, and is denoted by G\X. The identification
map ν : X → G\X is called the orbit map. It is an open mapping for if U is
open in X, then ν−1(ν(U)) = ∪

g∈G
gU . Note that each gU is open because g is a

homeomorphism.
A map f : X → Y is called a proper mapping if preimage of a compact set

is compact. For a general G-space, the orbits may fail to be closed subsets of X,
and consequently, G\X would not be T1 (i.e., points in G\X may not be closed).
However, when G is compact and X is Hausdorff, we have:

1.1.4 Theorem. [?, 3.1] If X is a Hausdorff G-space with G compact, then
(1) G\X is Hausdorff,
(2) the orbit map X → G\X is a closed mapping,
(3) the orbit map X → G\X is a proper mapping,
(4) X is compact if and only if G\X is compact,
(5) X is locally compact if and only if G\X is locally compact.

These facts are easy to prove. To obtain similar properties when G is a non-
compact Lie group, we must impose the notion of proper action (see section 1.2
below).

1.1.5. Let
Gx = {g ∈ G : gx = x}.

This subgroup of G is a closed subgroup of G if points of X are closed (i.e., X is
T1). It is called the isotropy subgroup, stabilizer or stability subgroup of G at x.
The set

XG = {x ∈ X : gx = x for all g ∈ G}
is called the fixed point set of the action of G on X. It is a closed subset of X if X
is Hausdorff. We sometimes write XG as F (G,X) or Fix(G,X).

Clearly,
Ggx = gGxg

−1

so that, if y ∈ Gx, then Gy = gGxg
−1 for any g such that gx = y. By (Gx) we

mean the conjugates of Gx. This set of conjugates is called the orbit type of the
orbit Gx.

If K is a normal subgroup of G and X is a G-space, then there is induced a
natural action of G/K on K\X, and the orbit mapping ν : X → G\X factors

through X
K\−−−−→ K\X G/K\−−−−→ G\X. The induced natural action

G/K ×K\X −→ K\X
is given by gK · (Kx) = g(Kx). (Strictly speaking, if K is not a closed subgroup of
G, then the topological group G/K is not a Hausdorff topological group. It is often
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assumed that a topological group is Hausdorff which will automatically imply that
it is completely regular. Of course, our main concern is with Lie groups and their
closed subgroups).

If there exists a subgroup K of G, K 6= 1, such that XK = X, we say that G
acts ineffectively ; otherwise, G acts effectively . Therefore, the action is effective if
and only if ∩

x∈X
Gx = 1. We call the largest subgroup K of G that fixes all of X, the

ineffective part of the action. It is a closed (assuming X is T1) normal subgroup
and G/K acts effectively on X.

1.1.6 . An action of G on X is transitive if the orbit through some point of X
consists of all of X. That is to say, that given any x and y in X, there exists g ∈ G,
such that gx = y. Such an action is simply transitive if such g is unique. If G acts
transitively on X, then the function G/Gx → G(x) ↪→ X given by gGx → gx is
onto. Clearly the map is one-one. Moreover, the map is continuous. This is an
immediate consequence of the universal properties of quotient mappings. If G/Gx is
compact, and X is Hausdorff, then the mapping is a homeomorphism. In general,
however, the inverse mapping may fail to be continuous. See section 1.2.3 for a
condition guaranteeing continuity of the inverse.

1.1.7 Example. Let G(∼= R) be a linear subspace of R2 which consists of the points
on a line through the origin with irrational slope. Reducing the coordinates in R2

modulo 1 induces the standard covering projection,

p : R2 −→ Z
2\R2 = T 2,

of R2 onto the 2-torus T 2. This is a homomorphism of the additive group R2 onto
T 2 with kernel the standard integral lattice subgroup Z2. Since G ∩ Z2 = {0} is
the trivial group, G descends to T 2 as a one-one continuous homomorphism onto
its image. Let X = p(G) with the relative topology of T 2 Then G acts on G by left
translations and this descends to a transitive G-action on X, with the stabilizer
G0 = 0. Now note that this topology on X is strictly weaker than the topology of
the original G.

1.1.8 Exercise. (a) Show that the two Z5 = 〈λ〉 actions on the unit disk given by

λ× z 7→ e
2πi
5 z, λ× z 7→ e

4πi
5 z

are not G-equivariant but, are weakly G-equivariant.
(b) Show that if f : (G,X) → (G, Y ) is a weak G-equivalence, then f induces

a homeomorphism G\X → G\Y which sends orbits of type (H) to orbits of type
(αf (H)).

1.1.9 Definition. G acts freely on X if Gx = 1 for all x ∈ X.

Examples of free actions are groups of covering transformations, and the left
translations in a principal G-bundle. However, free actions are more general than
the left translations in a principal G-bundle. See section 1.3 for a definition. In
Example 1.1.7, R acts freely on p(G) but p(G)→ R\p(G) (a point), is not a principal
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R-bundle projection. The reason is that the action fails to be locally proper (see
the next section).

1.2. (Locally) Proper G-spaces

1.2.1. We shall be largely dealing with actions of Lie groups on spaces. Because
our group may not be compact, we need to recall the notion of a proper action of
a locally compact topological group on a topological space. Compact Lie group
actions tend to leave important geometrical structure of spaces invariant whereas
non-compact Lie groups often do not.

Properness is the concept that enables properties of the actions of non-compact
Lie groups to resemble those of compact groups. There are good sources for prop-
erties of proper actions; e.g., R. Palais[?], R. Kulkarni[?]. However, we caution the
reader that there is no uniformity in terminology for this concept. We shall, for our
convenience, recall what we shall need and refer to Palais for some of the proofs.

In the section 1.2 through 1.6,
♣
G is a locally compact topological group and XOK?

is a completely regular Hausdorff space and neighborhoods will be open sets unless
specified or commented differently. The point of complete regularity is to help
ensure that G\X will have nice separation properties and this coupled with the
notion of (local) properness enables us to have a slice theorem, (cf. section 1.5.1).

1.2.2 Definition. An action of G on X is called locally proper if for each x ∈ X,
there exists a neighborhood U of x such that

{g ∈ G : gU ∩ U 6= ∅}

has compact closure. In particular, Gx, being a closed subset of the above set (since
X is T1), is compact . If G is discrete, the above set is finite. (In Palais[?], a locally
proper G-space is called a Cartan G-space). The action is called proper if for each
x, there exists a neighborhood U of x such that, for each y ∈ X, there exists a
neighborhood V of y for which the closure of

{g ∈ G : gV ∩ U 6= ∅}

is compact. Observe that if closure of {g ∈ G : gV ∩ U 6= ∅} is compact, then
closure of {g ∈ G : V ∩ gU 6= ∅} is compact: For, if C is compact, then C−1 is
compact also.

1.2.3. The following properties of locally proper and proper actions are proved in
Palais[?]. The proofs are easier for compact or discrete G. The use of nets can
be avoided if one assumes that X is first countable. We will use these properties
mostly for compact or discrete G. We suggest that the reader furnish his/her own
proofs for discrete G.

For locally proper actions, we have:

(1) Each orbit is closed in X. Hence, G\X is T1. In fact, G\X is locally
completely regular. However, G\X may fail to be Hausdorff.

(2) The map gGx → gx is a homeomorphism of G/Gx onto Gx.
(3) IfK is the ineffective part ofG, thenG/K acts locally properly. (Similarly,

for proper actions).



1.2. (LOCALLY) PROPER G-SPACES 5

(4) If an x has a neighborhood U such that {g ∈ G : U ∩ gU 6= ∅} is finite,
then Gx is discrete in X, and in fact, G itself is discrete.

(5) (G,X) is proper if and only if G\X is regular. In fact, G\X is completely
regular when (G,X) is proper.

Here are some additional facts for G-spaces.

(6) a) If X and Y are G-spaces, and if X is a locally proper (resp. proper)
G-space, then so is X × Y .
b) Let Y be a locally proper (resp. proper) G-space and X a (resp.
completely regular) space. If f : X −→ G\Y is a map, then the pullback

f̃ : X̃ −→ Y is a locally proper (resp. proper) G-space whose orbit space
is X.
c) If X is a locally proper (resp. proper) G-space, H a closed subgroup of
G, and Y an H-invariant subspace of X, then Y is locally proper (resp.
proper) H-space. (Note, the Example 1.1.7 shows that H must be closed,
for we may take H = p(G) ⊂ T 2).

(7) If X is a locally compact G-space, the following are equivalent:
(a) (G,X) is locally proper and G\X is Hausdorff
(b) (G,X) is proper
(c) For each compact subset C of X, the closure of {g ∈ G : gC∩C 6= ∅}

is compact.
(8) Let X be a proper G-space and H a closed normal subgroup of G. Then

H\X is a proper G/H-space.

Note: All citations are from Palais’ paper[?]: [1] follows from (1.1.4) and Corollary
2 of (1.2.8); [2] is (1.1.5); [3] is (1.1.6); [5] (1.2.5) says that locally proper and G\X
completely regular imply properness, and (1.2.8) states properness implies G\X
regular; [6a] is (1.3.3), [6b] is (1.3.4); and [6c] is (1.3.1); and [7] is (1.2.9); The item
[7] above is a common criterion for proper action. We state it as a corollary.

1.2.4 Corollary. Let X be a completely regular, locally compact Hausdorff space.
A G-action on Xis proper if and only if, for each compact subset C of X, the
closure of {g ∈ G : gC ∩ C 6= ∅} is compact.

1.2.5 Remark. Even if (G,X,ϕ) is not necessarily a proper G-space, there is a
natural homomorphism ϕ̃ : G→ TOP(X), where TOP(X) is the group of all self-
homeomorphisms of X. We may topologize TOP(X) so that ϕ̃ becomes continuous
if we choose to do so. For example, ϕ̃ will be continuous if we take the compact-open
topology on TOP(X), see [?, §9.4, p.75] and, consequently, also continuous if we
take the smaller point-open topology (i.e., the topology of point-wise convergence).
We shall often denote ϕ̃ by ρ : G→ TOP(X), thinking of ρ as a representation.

TOP(X) becomes a topological group under the point-open topology and then ρ
becomes a homomorphism of topological groups. Under the compact-open topology,
TOP(X) is almost a topological group but fails only in that inversion may not be
continuous. However, if X is assumed to be locally compact Hausdorff and either
connected or locally connected, then TOP(X) under the compact-open topology is
a topological group. cite—- . If and when the topology on TOP(X) becomes an [Arens]
issue, we shall be explicit about it.
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H-kernel
H-slice
global H-slice
slice at x

For a locally proper G-action on a Hausdorff space with G locally compact, we
have the following

1.2.6 Proposition ([?, (1.1.7)]). ρ : G → TOP(X) is a continuous and relatively
open map of G when TOP(X) is given the point-open topology or the compact-open
topology. Furthermore, the image ρ(G) is closed in both topologies. Thus, if ρ is
injective (i.e., the G action is effective), ρ is an isomorphism onto a closed subgroup
of TOP(X) under the point-open topology and, similarly under the compact-open
topology if TOP(X) is a topological group with this topology.

1.3. Fiber Bundles

1.4. Tubular neighborhoods and Slices

The most important tool for analyzing Lie group actions is the existence of
a slice. Slices give us the complete equivariant structure of an invariant tubular
neighborhood of each orbit.

1.4.1 Definition. Let X be a G-space and H a closed subgroup of G with a local
cross-section. A subset S of X is an H-kernel if there exists an equivariant map
f : GS → G/H such that f−1(H) = S. If, in addition, GS is open in X, we call
S an H-slice in X. If GS = X, we call S a global H-slice for X. For x ∈ X, by a
slice at x, we mean a Gx-slice in X which contains x.

1.4.2. The following is a prototypical example of a global H-slice in X. In fact,
it follows from Proposition 1.4.3 that any two spaces with the same global H-slices
are G-isomorphic.

Prototypical Example: Let H be a closed subgroup of G with a local cross-
section, and suppose H acts on S. On G× S, define an action of G×H by

(g, h)(g, x) = (ggh−1, hs).

Denote the quotient of the “diagonal” H-action by G×H S, and the image of (g, s)
by 〈g, s〉 ∈ G×H S. Since H commutes with the G-action on G× S, the G-action
descends to G ×H S, and is given by (g, 〈g, s〉) → 〈gg, s〉. We get a commutative
diagram of projections and orbit mappings:

(G×H,G) π1←−−−− (G×H,G× S)
G\−−−−→ (H,S)yH\ yH\ yH\

(G,G/H) π1←−−−− (G,G×H S)
G\−−−−→ H\S = G\(G×H S)

Clearly, G ×H S is a G-space whose orbit space is H\S and also a fiber bundle
over G/H with fiber S and structure group H/K, where K is the ineffective part
of the action of H on S. The associated principal bundle has total space G/K and
structure group H/K. There is the obvious G-isomorphism between (G,G ×H S)
and (G,G/K ×H/K S). The map π1 induced from π1, the projection onto the first



1.4. TUBULAR NEIGHBORHOODS AND SLICES 7

G-invariant tube
about the orbit Gx

G-invariant tubular
neighborhood of
Gx

factor, is G-equivariant such that π−1
1 (H) = S = 〈e, S〉. Thus, the G-space G×H S

has a global slice 〈e, S〉.
We have the following converse:

1.4.3 Proposition. Suppose H is a closed subgroup of G with a local cross-section,
and X is a G-space with a G-equivariant map f : X → G/H. Let S = f−1(H).
Then there exists a G-isomorphism ϕ : (G,G×H S) −→ (G,X).

Proof. We first show that there exists a G-map ϕ which is continuous, one-one
and onto. The set S is H-invariant because f(hs) = hf(s) ∈ H for all h ∈ H and
s ∈ S. Define an action of G×H on G× S as above and a G-map ϕ̃ : G× S → X
by ϕ̃(g, s) = gs. The map is easily seen to be continuous. We show ϕ̃ is also onto.
For any x ∈ X, f(x) = gH ∈ G/H for some g ∈ G. Then f(g−1x) = H. Therefore,
s = g−1x ∈ S for some s ∈ S, and x = gs = ϕ̃(g, s).

If ϕ̃(g, s) = ϕ̃(g′, s′), then gs = g′s′, hence s′ = g′
−1
gs. But as f(s′) =

g′
−1
gf(s) = H, g′−1

g ∈ H. Thus, g′ = gh−1, s′ = hs for some h = g′
−1
g.

Consequently, ϕ̃(g′, s′) = ϕ̃(gh−1, hs) and ϕ̃ factors through ϕ : (G,G ×H S) −→
(G,X).

In fact, we have actually shown that ϕ is continuous one-one and onto. Fur-
thermore, it is G-equivariant. To show ϕ−1 is continuous when G is compact first,
we observe that G×S −→ GS is a closed mapping since S is closed in X. We defer
the continuity of ϕ−1 in the non-compact case until Corollary 1.4.11. �

The proposition suggests the following

1.4.4 Definition. If a G-space has a slice Sx at x, and Gx has a local cross-section
in G, then GSx, which is G-isomorphic to G×Gx Sx, by Proposition 1.4.3, is a fiber
bundle over the orbit Gx with structure group Gx/

⋂
s∈S Gs (the ineffective part of

the action of Gx on the slice Sx) and fiber Sx. The set GSx is called a G-invariant
tube about the orbit Gx or a G-invariant tubular neighborhood of Gx. The fiber
over gx is gSx.

1.4.5. Proposition 1.4.3 says that if a G-action has a slice at x, then there exists
a G-invariant tubular neighborhood about Gx. Conversely, the G-invariant map
π1 in 1.4.2 shows that if there exists a G-invariant neighborhood of G(x) in X,
of the type (G,G ×Gx S) with S containing x, then S is a slice at x. Therefore
the existence of a slice at x is equivalent to the existence of a G-invariant tubular
neighborhood at x.

1.4.6 Example. Let (G,X) be a group of regular covering transformations, ν :
X −→ G\X, the covering projection. For ν(x) = x∗ ∈ G\X, let U∗ be a neigh-
borhood of x∗ which is evenly covered. That is, ν−1(U∗) is the disjoint union of
copies of open sets homeomorphic to U∗. If U denotes the copy containing x, then
ν−1(U∗) = GU which is isomorphic to G×U , and forms a G-tubular neighborhood
of ν−1(x∗).

1.4.7 Example. Consider the affine transformations of ZoZ2 = G on the real line
as given by

(n, ε)x = εx+ n, ε = ±1.
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Brieskorn variety The stabilizer at x is trivial if x is not an integer or a half integer. If x = m
2

for some integer m, then Gx = {(0, 1), (m,−1)} ∼= Z2. For a slice at 0, one can
choose the set S = (− 1

2 ,
1
2 ) ⊂ R. One has that (ZoZ2) ×Z2 (− 1

2 ,
1
2 ) is a tubular

neighborhood V of the orbit. It consists of all of R except for the orbit through 1
2 .

That is, G ×Z2 S = V = GS = R − ( 1
2 + Z). We can define a (ZoZ2)-equivariant

map
f : G×Z2 S = V = GS −→ G/Gx = ZoZ2/Z2

by v = (n, ε)(s) = (n,−ε)(−s) f−→ {(n, 1) ∪ (n,−1)}, then f−1{(0, 1) ∪ (0,−1)} =
f−1(Z2) = f−1(G0) = S. (Note that the equivariant mapping f can not be ex-
tended to all of R).

1.4.8(Brieskorn Varieties). Consider an action C∗ × Cn → C
n given by

z × (z1, · · · , zn)→ (zb1z1, · · · , zbnzn)

where bi are positive integers ≥ 1.
Notice the restriction to S1 × S2n−1 → S2n−1 where z ∈ S1 ⊂ C

∗, and
(z1, · · · , zn) ∈ S2n−1 ⊂ Cn is well defined.

The bi’s that we shall use are arrived at as follows: Define a set

V (a1, a2, · · · , an) = {(z1, · · · , zn) | za1
1 + · · ·+ zann = 0}

where ai are integers ≥ 2. Put a = lcm{a1, . . . , an} and define bi = a/ai.
Then V is invariant under the C∗ action for

(zb1z1)a1 + · · ·+ (zbnzn)an = za(za1
1 + · · ·+ zann ) = 0

if (z1, · · · zn) ∈ V . Note that the set

K(a1, . . . , an) = V (a1, . . . an) ∩ S2n−1

is also S1 invariant. Then

K(a1, . . . , an) = {(z1, . . . , zn) | z1z1 + · · ·+ znzn = 1 and za1
1 + · · · zann = 0}.

Let
p(z1, · · · , zn) = za1

1 + · · ·+ zann .

The polynomial function p : Cn − 0 → C has 0 as a regular value. There-
fore p−1(0) = V (a1, · · · , an) − 0 is a complex manifold of dimension n − 1 and
K(a1, · · · , an) is a real analytic manifold of dimension 2n− 3. It is not difficult to
see that K(a1, · · · , an)× R1 ≈ V (a1, · · · , an)− 0.

Define ϕ : S2n−1 −K → S1 by

ϕ(~z) =
p(~z)
|p(~z)|

∈ S1.

If we define an S1-action on this image by

z × p(~z)
|p(~z)|

7→ za
p(~z)
|p(~z)|

,

we see that this map ϕ is S1-equivariant. Therefore there exists a global S1-slice
Y = ϕ−1(1), 1 ∈ S1 for the (S1, S2n−1 −K) action. That is,

(S1, S2n−1 −K) −−−−→
≈

(S1, S1 ×Za Y )
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an S1-equivariant homeomorphism. Thus, S2n−1 −K fibers over S1/Za equivari-
antly with fiber Y = ϕ−1(1) and with structure group Za.

It can be shown citeMilnor
♣

that Y ∪K is a compact manifold with boundary. Milnor p.76
Y is parallelizable of dimension 2(n−1) and has the homotopy type of K. In many
cases, K is a smoothly embedded topological sphere in Cn not diffeomorphic to the
standard sphere.

As a special case, take C2 and the action z × (z1, z2) → (z2z1, z
3z2). On S3

this action results in a fixed point free action where the stabilizer on (z1, 0) is Z2

and, on (0, z2) it is Z3. The 1-manifold K is the trefoil knot. From above, S3 −K
fibers over the circle with fiber a 2-manifold having the homotopy type of S1 ∨ S1.
Since its boundary is K, F is a punctured torus T ′, so S3 −K = S1 ×Z6 T

′, which
gives the smooth fibered structure of the complement of the (2, 3) torus knot K.

1.4.9 Lemma. [?, 2.1.2] Let S be an H-kernel in the G-space X, and η : U → G
be a local cross-section from G/H to G, (η(H) = 1). Then if g0 ∈ G, the map
F : (u, s) 7→ g0η(g−1

0 u)s is a homeomorphism of g0U×S onto an open neighborhood
of g0S in GS. Moreover, f(F (u, s)) = u when f is the equivariant map defining
the H-kernel.

Proof. f(F (u, s)) = g0(η(g−1
0 u)H) = g0(g−1

0 u) = u. Therefore, F (g0U × S) =
f−1(g0U), which is an open neighborhood of g0S in GS. Note that F is one-one and
continuous. We claim that F−1 is continuous by showing that if F (uα, sα) converges
to F (u, s), then uα → u and sα → s, where we use nets if there is no countable
neighborhood base. Now because f is continuous, uα = f(F (uα, s)) converges
to u = f(F (u, s)). Therefore, η(g−1

0 uα)−1 converges to η(g−1
0 u)−1 because η is

continuous. Now, η(g−1
0 uα)sα = g−1

0 F (u, sα) which converges to g−1
0 F (u, s) =

η(g−1
0 u)s, which implies sα converges to s.
Note, taking g0 = 1, the argument shows that if W is open in S, then G(W ) is

open in GS. �

1.4.10 Proposition. [?, 2.1.3] Let S1 and S2 be H-kernels in G-spaces X1 and X2

respectively, and let f0 be an H-equivariant map of S1 into S2. Assume H has a
local cross-section from G/H to G. Then there exists a unique G-equivariant map
f of GS1 onto GS2 such that f |S1 = f0; namely, f(gs) = gf0(s) for g ∈ G, s ∈ S.
Moreover, if f0 embeds S1 into S2, then f embeds GS1 into GS2.

Proof. We are able to extend f0 to f because f0 being H-equivariant implies
Hs ⊂ Hf0(s), s ∈ S, and so, Gs ⊂ Gf(s). To check continuity of f we use the
previous Lemma. Let η : U → G be a local cross section, U a neighborhood
of H in G/H. Now Fi : (u, s) 7→ g0η(g−1

0 u)s is a homeomorphism of g0U × Si
onto a neighborhood of g0Si in GSi, i = 1, 2, and g0 ∈ G. Since f(F1(u, s)) =
f(g0(η(g−1

0 (u))s)) = g0η(g−1
0 u)f0(s) = F2(u, f0(s)), the continuity of f follows.

Also if f−1
0 exists and is continuous, then f−1 is continuous by symmetry. �

1.4.11(Proof of Proposition 1.4.3). Suppose (G,X) and f : X → G/H and S =
f−1(H) are given as in the Proposition 1.4.3. Choose the H-equivariant identity
map id : S → S and extend it to ϕ : G ×H S → (G,X). This extension is unique.
Therefore, ϕ is a G-isomorphism.
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1.4.12 Corollary. If (G,X) is a completely regular proper G-space and G has a
slice S at x, and Gx has a local cross-section on G, then S can be chosen so small
such that each y 6∈ Gx, has a neighborhood Vy for which the closure of {g ∈ G :
GS ∩ Vy 6= ∅} is compact.

Proof. By Lemma 1.4.9, there is a homeomorphism of U×S onto a neighborhood
of S in GS where U is a neighborhood of Gx in G/Gx. Therefore, ν : S → Gx\S
has open image on G\X. Take a sufficiently small neighborhood W of ν(x) and put
ν−1(W )∩S = S′. Then η(U)S′ is a neighborhood of x. If U is also to be sufficiently
small, then the definition of proper will imply that for each y ∈ X, there exists Vy
so that the closure of {g ∈ G : GS′ ∩ Vy 6= ∅} is compact. �

1.5. Existence of Slices

As one can see from Proposition 1.4.3, the existence of a slice at x means
there exists a G-equivariant open tube about the orbit Gx which is G-isomorphic
to (G,G ×Gx Sx), where Sx is the slice at x. Therefore, the global structure of
the G-action can be achieved by successfully piecing together the tubes about the
orbits. But of course, slices do not exist without restrictions on G as the example
1.1.7 shows. Showing that slices exist for various situations has had an illustrious
history with various significant contributions having been made by Montgomery,
Zippin, Yang, Kozul, Mostow, Palais[?] and others. Excellent expositions for the
existence of slice for compact Lie group actions can be found in [?] or in [?]. We
will sketch a proof of this in this section when the action is smooth.

For the general Lie groups, we have the

1.5.1 Theorem ([?]). If (G,X) is a locally proper Lie group action on a completely
regular space X, then G has a slice at each x ∈ X.

1.5.2 Corollary. If G is a Lie group acting properly on a completely regular space
X and, x and y lie on different orbits of G, then there exist slices Sx and Sy at x
and y respectively such that the closures of GSx and GSy are disjoint.

Proof. Since G is a Lie group, G/H has a local cross-section to G for any closed
subgroup H. By Theorem 1.5.1, G has a slice at each x ∈ X. By 1.2.3(5), G\X is
completely regular. We can separate ν(x) and ν(y) by open sets whose closures are
disjoint. Now apply the procedure used in the proof of Corollary 1.4.12 to obtain
the desired conclusion. �

1.5.3 Corollary. For a completely regular G-space where G is a Lie group, the
following are equivalent:

(i) G acts locally properly,
(ii) G has a Gx-slice at each x ∈ X, and Gx is compact,
(iii) The closure {g ∈ G : gSx ∩ Sx 6= ∅} is compact for each x ∈ X.

For our purposes, we shall deal mostly with compact Lie group actions and two
types of non-compact Lie group actions. If G is not compact and not discrete, then
G will usually be acting freely as left translations on a principal G-bundle. In this
case, the existence of a slice is built into the definition of a principal G-bundle. If
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G is discrete, we shall give a direct elementary proof of the existence of a slice. Let
us begin with this latter case.

Again, Example 1.1.7 shows if we take the usual copy of Z in R, the free smooth
action on the descent of the irrational line is not locally proper and no slices exist
for this action.

1.5.4 Proposition. Let (G,X) be a locally proper G-space with G discrete and X
Hausdorff. For each x ∈ X, there exists a Gx-invariant neighborhood S such that
{g ∈ G : gS ∩ S 6= ∅} = Gx and gS ∩ gS 6= ∅ if and only if g and g belong to the
same Gx-coset.

Proof. By the property 1.2.3, which is valid if X is Hausdorff without assuming
completely regular, the orbits are closed subsets of X. Since the action is locally
proper, G discrete, then all orbits are discrete and all their stability groups are finite.
Let x ∈ X, then there exists U such that F = {g ∈ G : gU ∩ U 6= ∅} is a finite set.
If g 6∈ Gx, and g ∈ F , then gx 6= x. There exist neighborhoods Vxg of x and Vgx of
gx such that Vxg∩Vgx = ∅, Vxg ⊂ U and gVxg ⊂ Vgx. Put V = ∩g∈F−GxVx

g. Then
we have {g ∈ G − Gx : gV ∩ V 6= ∅} = ∅. Take W a neighborhood of x, W ⊂ V
and such that gW ⊂ V for all g ∈ Gx. Put S = Gx(W ), then S ⊂ V and S is
Gx-invariant, and gS ∩S = ∅ if and only if g ∈ G−Gx. Furthermore, observe that
gGx ∩ gGx 6= ∅ if and only if g and g belong to the same Gx coset. Thus, {gGxS},
as gGx runs through the disjoint Gx-cosets, forms an invariant neighborhood of the
orbit with each distinct gGx being disjoint from all the others. �

1.5.5 Theorem. Let (G,X) be a locally proper G-space with G discrete and X
Hausdorff. Then for each x ∈ X, there exists a slice S and (G,GS), a G-invariant
neighborhood of Gx, is G-isomorphic to (G,G×GxS) and homeomorphic to G/Gx×
S.

Proof. For S, we choose the S from the Proposition 1.5.4. Define f : GS → G/Gx
by

f(gs) = gGx, g ∈ G, s ∈ S.

If gs = g′s′, then g′
−1
g ∈ Gx by Proposition 1.5.4. Therefore, f(gs) = f(g′s′)

and so f is well defined. It is continuous since G/Gx is discrete, GS is a product
space homeomorphic to G/Gx×S since GS is a disjoint collection of open sets each
homeomorphic to P and indexed by G/Gx. The G-map

ϕ : (G,G×Gx S) −→ (G,GS)

defined by (g, 〈g, s〉) ϕ−→ ggs is clearly one-one, continuous, G-invariant and onto.
The inverse is also clearly continuous. �

1.5.6 Remark. Note this form of the slice theorem does not require that X be
completely regular. Even when X is a smooth manifold and the action is smooth,
the orbit space can fail to be Hausdorff. However if the action is proper, G\X will
be completely regular and, in particular, Hausdorff. Here is an

1.5.7 Example. Let the free R-action on the strip Z = {(x, y) : −1 ≤ y ≤ 1} be
that whose orbits are pictured below:
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Figure 1: Flow

This action is locally proper for if we delete either y = 1 or y = −1, then
the deleted strip is a (locally trivial) principal R-bundle with a cross-section (i.e.,
a global slice). However, there is no global cross-section. The action is proper
on {(x, y) : −1 < y < 1} but properness on the strip is violated for if U is a
neighborhood of (x, 1) and V is a neighborhood of (x′,−1), then closure {g ∈
G : gU ∩ V 6= ∅} is not compact. The orbit space is a half open interval with a
double point at the end point, corresponding to the two lines y = ±1. This is a non-
Hausdorff 1-manifold with boundary. We shall reserve the term n-manifold to mean
a Hausdorff space with a countable basis with each basis element homeomorphic to
an open subset of Rn. For a discrete example, just choose Z ⊂ R in this example.

1.5.8 Theorem. Let (G,M) be a smooth action of a compact Lie group on a smooth
manifold. Then each point x ∈M has a smooth Gx-slice.

Proof. [Sketch] (cf. [?, p.108]) Introduce a Riemannian metric ρ on M . Then
average this metric over the compact Lie group G:

ρ′(v, v′) =
∫
G

ρ(gv, gv′)gxdµ(g)

to get a new G-invariant Riemannian metric ρ′. The G-action via the differential
on the tangent bundle T (M) now acts as isometries with respect to the new metric
ρ′. The exponential map exp : T (M)→M is G-equivariant. That is,

g exp(v) = exp(g∗v),

where g∗ denotes the differential of the diffeomorphism g ∈ G. For a (compact)
orbit G(x), the tangent bundle along the orbit splits equivariantly into the tangent
vectors along the orbit and those normal to the orbit. For ε > 0, sufficiently small,
exponential maps the vectors of length less than ε of the normal bundle of the
compact orbit Gx diffeomorphically onto an open neighborhood consisting of those
points of M whose distance from Gx is less than ε. The normal vectors at x ∈ Gx
are invariant under the action of Gx and so in any normal coordinate system about
x, Gx acts orthogonally. For a slice S at x, take the exponential of the normal
vectors of length less than ε to Gx at x. Then S is an open disk centered at x.
Clearly GxS = S and GS is an open tubular neighborhood of Gx. We claim

gS ∩ S 6= ∅ =⇒ g ∈ Gx.
Suppose g(exp v) = expw, with v, w ∈ exp−1

x (S). Because the restricted exponen-
tial is a diffeomorphism on GS, exp(g∗v) = g exp(v) = exp(w), and so g∗(v) = w.
But w ∈ exp−1(S), hence g∗(v) ∈ exp−1(S) which implies that g ∈ Gx.

Next, we claim there is a G-isomorphism between (G,G ×Gx S) and (G,GS).

Define a smooth G-equivariant map (G,G × S)
f−→ (G,GS) by (g, (g, s)) =

(gg, s) 7→ g(gs) = gg(s). This map is smooth, G-equivariant and onto. It
is not one-one in general. In fact, f factors through (G,G ×Gx S): Suppose
(g, s) 7→ gs and (g′, s′) 7→ g′s′ = gs. Then g′

−1
g = h ∈ Gx. Consequently,

(g′, s′) = (gh−1, s′) = (gh−1, g′
−1
gs) = (gh−1, hs). Conversely, (gh−1, hs) 7→ gs for
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all h ∈ Gx. Thus, the map f factors through (G,G ×Gx S). Note that G-action
descends to G×Gx S since the diagonal Gx action commutes with the G-action on
G× S. If we denote the image of (g, s) by 〈g, s〉 ∈ G×Gx S, then g〈g, s〉 = 〈gg, s〉
and is well defined. It is clear that the induced f : G×Gx S −→ GS is now one-one.
It suffices to show f is open to conclude that f is a diffeomorphism. Let t : U −→ G
be a local cross-section in G/Gx and define K : (u, v) 7→ K∗(u)(v) on U ×exp−1(S)
diffeomorphically onto an open set in the normal bundle to G(x). Then K̃ = exp ◦K
is a diffeomorphism onto an open set in X. Since exp(t∗(u)v) = t(u) exp(v), then
(u, s) 7→ t(u)s is a diffeomorphism of U × S onto an open set in GS. �

1.6. Actions of G ·Π (G Lie group, Π discrete)

The following proposition will be extremely useful in our study of Seifert fiber-
ings.

1.6.1 Proposition. Let G be a Lie group acting effectively and properly on a
completely regular space X. Suppose there also exists a discrete group Π acting
effectively on X. Assume

(1) Π normalizes G in TOP(X), and
(2) Γ = G ∩Π is a closed discrete subgroup of G.

Put Q = Π/Γ. Then there exists an induced action of Q on G\X = W which is
effective. If Π acts properly and Γ is cocompact in G, then the Q action on W is
proper. Conversely, if the Q action on W is proper, then the group, GΠ, generated
by G and Π acts properly on X, and consequently, Π acts properly on X.

Proof. Let ν : X → W denote the G-orbit mapping. Since Π normalizes G, Π
acts effectively on W as a Q-action. Since G was proper on X, the orbit space W ,
by the property 1.2.3(5), is completely regular. The map ν is Π-equivariant.

(not assuming X is locally compact) Later!!

(assuming X is locally compact) We shall prove (Q,W ) is proper. Let K ⊂ W be
compact. One can find a set K ′ ⊂ X such that K ′ = (

⋃
Si)∩ ν−1(K) (where Si is

a slice) and ν(K ′) = K. This is possible because the action (G,X) is proper. Let
e ∈ F ⊂ G be a compact set such that Γ · F = G (say, a fundamental domain).
Then F ·K ′ is compact. Suppose α ∈ Q satisfies α(K)∩K 6= ∅. Then, by adjusting
by an element of Γ if necessary, we can find α̃ ∈ Π such that α̃(F ·K ′)∩(F ·K ′) 6= ∅.
Since the Π action is proper, there are only finitely many such α̃’s in Π, and hence
there are only finitely many such α’s in Q.

For the converse, let C ⊂ X be a compact set. Then ν(C) ⊂ W is compact.
Since (Q,W ) is proper, there exist only finitely many elements α1, α2, · · · , αn ∈ Q
such that αi(ν(C)) ∩ ν(C) 6= ∅. For each i, pick a preimage α̃i ∈ Π of αi, and let

Di = α̃i(C) ∪ C.
Then Di is a compact subset of X.

Suppose f ∈ G ·Π satisfies f(C) ∩ C 6= ∅. Let f ∈ Q denote the image of f .
Then

f(ν(C)) ∩ ν(C) = ν(f(C)) ∩ ν(C) ⊃ ν(f(C) ∩ C) 6= ∅.



14 1. TRANSFORMATION GROUPS

covering projection
evenly covers
covering

space!equivalent
covering

transformation

This implies that f is one of the αi’s; that is, f = gα̃i for some g ∈ G. Then
gα̃i(C) ∩ C 6= ∅. This implies

g(Di) ∩Di = g(α̃i(C) ∪ C) ∩ (α̃i(C) ∪ C) ⊃ gα̃i(C) ∩ C 6= ∅.

Consequently we have

{f ∈ G ·Π : f(C) ∩ C 6= ∅} ⊂
⋃
i

{gα̃i ∈ G ·Π : g(Di) ∩Di 6= ∅}

=
⋃
i

{g ∈ G : g(Di) ∩Di 6= ∅}α̃i.

Since (G,X) is proper, the last term is compact, and the proof is complete. �

1.6.2 Example. Let X = R
2, G = R and acting on R × R by translation on the

first factor. Let Π = Z
2 with generators (1, 1) and (1,

√
2) ∈ R × R and act on

R
2 by translating as a subgroup of R2. The actions commute and Π ∩ G = 0 ∈
R. Both G and Π act properly on R2 with quotients W = R and Π\R2 = T 2,
respectively. Neither of the induced actions (G×ΠG , G\X) = (Z2,W ) = (Z2,R) or
(G,Π\R2) = (R, T 2) are locally proper.

1.7. Covering Spaces

Covering spaces play a crucial role in this book. The subject is very familiar
and to set notation, we adopt the terminology of covering projections as in [?, §2.5
and §2.6]. Unless specified otherwise, a covering projection will be a map

ν : (Y, y) −→ (X,x),

where Y is path-connected, X is locally path-connected, and semi-1-connected (each
x has a neighborhood U such that i∗ : π1(U, x)→ π1(X,x) is trivial) such that

(i) ν is onto,
(ii) each x has a neighborhood such that ν−1(U) is a disjoint collection of

open sets each of which maps, by ν, homeomorphically onto U (Y evenly
covers X).

The category of covering spaces has objects which are covering projections
ν : Y → X and morphisms are commutative triangles

Y1 Y2
-f

X

ν1

@
@
@
@R

ν2

�
�
�
�	

where ν1 and ν2 are covering projections. In this category, every morphism is also
a covering projection. If f is a homeomorphism, the covering spaces Y1 and Y2

are called equivalent . If Y1 = Y2 and f is a homeomorphism, we call f a covering
transformation. It is well known that f is determined by what it does to a single
point.
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covering
space!construction

universal covering
space

1.7.1(Construction of covering spaces). Let K be a subgroup of π1(X,x). We define
XK = the covering space of X associated with the subgroup K

so that π1(XK , x̂0) = K as follows:
Denote by P (X,x) the set of all paths in X with initial point x. Define an

equivalence relation on P (X,x) by p1 ∼K p2 if and only if p1(1) = p2(1) and the
closed loop

p1 ∗ p2 =

{
p1(2t), 0 ≤ t ≤ 1/2,
p2(2− 2t), 1/2 ≤ t ≤ 1

represents an element of K. Finally let

XK = P (X,x)/ ∼K .

A basis for the topology of XK consists of the collection {〈p, U〉}, where U is open
in X, p is a path such that p(1) ∈ U , p(0) = x, and 〈p, U〉 denotes all equivalence
classes of paths having a representative of the form p ∗ p′, where p′(0) = p(1) and
p′(t) ∈ U . (If X is Hausdorff, this topology is the same as that induced by the
identification topology where P (X,x) is given the compact-open topology).

The map p 7→ p(1) induces the projection map ν : XK → X. If x̂0 ∈ XK

denotes the equivalence class of the constant path at x, then ν∗ : π1(XK , x̂0) →
π1(X,x) has image K.

If K is a normal subgroup, then a free and locally proper action of the quotient
group π1(X,x)/K on XK can be defined to show that ν : XK → X is a regular
covering: Recall that, the group operation of π1(X,x) is defined by juxtaposition.
That is, given loops `1(t), `2(t) at x, [`1`2] is the homotopy class of

(`1 ∗ `2)(t) =

{
`1(2t), 0 ≤ t ≤ 1/2,
`2(2t− 1), 1/2 ≤ t ≤ 1.

Let α ∈ π1(X,x)/K and ŷ ∈ XK . Take a path p in P (X,x) representing ŷ, and a
loop ` in P (X,x) representing α. Define

α · ŷ = the “∼” equivalence class represented by ` ∗ p ∈ P (X,x).

Suppose p′ ∈ P (X,x) and α′ ∈ P (X,x) are other elements representing ŷ and α
respectively. Then p∗p′ and `∗ `′ represent elements of K. Thus, (`∗p)∗ (`′ ∗ p′) '
` ∗ (p ∗ p′) ∗ `′. Since [p ∗ p′] ∈ K and K is normal in π1(X,x), [` ∗ (p ∗ p′) ∗ `′] =
[`] ∗ [p ∗ p′] ∗ [`′] = ([`] ∗ [p ∗ p′] ∗ [`]−1)([` ∗ `′]−1) ∈ K. Consequently, the two paths
` ∗ p and `′ ∗ p′ represent the same point of XK . Finally, K acts trivially on all of
XK so that π1(X,x)/K is the group of covering transformations.

If, in particular, K is the trivial group, XK is the universal covering space
X̃. In general, we have a commuting diagram of spaces with free, locally proper
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lifting-sequence actions:

π1(X,x)/K\
�
�
�
�	

XK

K\
@
@
@
@R

X̃

X
?

π1(X,x)\

Let ν′ : (X ′, x′)→ (X,x) be a covering projection such that ν′∗ : π1(X ′, x′) =
K ⊂ π1(X,x). Let XK be the covering space of X associated with the based space
(X,x). If p ∈ P (X,x), then its “∼” equivalence class represents a point ŷ ∈ XK .
We may lift the path p to a path p̃ in X ′ with initial point x′ and terminal point
p̃(1). The projections ν(ŷ) = p(1) and ν′(p̃(1)) are equal.

1.7.2 Exercise. Show that the assignment ŷ
f−→ p̃(1) defines an equivalence

(XK , x̂0) (X ′, x′)-f

(X,x)

ν
@
@
@
@R

ν′
�
�

�
�	

We may now transfer all of our constructions with XK to X ′ by just lifting the
paths used in the construction of XK to X ′.

1.8. Lifting Group Actions to Covering Spaces

In this section, we shall describe how we may lift actions on a space X to
actions on covering spaces of X.

1.8.1(Lifting sequence). Let ν : X̃ −→ X be the universal covering projection, and
f : X −→ X a homeomorphism. Then f lifts to a homeomorphism f̃ : X̃ −→ X̃,
making the diagram

X̃
f̃−−−−→ X̃y y

X
f−−−−→ X

commutative. Since π1(X,x) acts on X̃ effectively as the group of covering trans-
formations, we view π1(X,x) as a subgroup of TOP(X̃), the group of all self-
homeomorphisms of X̃.

Since each element α ∈ π1(X,x) induces the identity map on X, there are many
such lifts f̃ ; namely, f̃ ◦ α, for all α ∈ π1(X,x), are lifts of f .
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action!lifting exact
sequence

lifting exact sequence
extended-G-lifting

Let ρ : G → TOP(X) be an action of G on X, and let K ⊂ G be the kernel
of ρ. That is, K is the ineffective part of the action. The group of all liftings of
elements of G is denoted by G∗, and fits the following commuting diagram

1 −−−−→ π1(X,x) −−−−→ π1(X,x)×K −−−−→ K −−−−→ 1

=

y y y
1 −−−−→ π1(X,x) −−−−→ G∗ −−−−→ G −−−−→ 1

ρ∗
y ρ

y
TOP(X) =−−−−→ TOP(X)

In fact, the lifts of all of TOP(X) is N(π1(X,x)) = NTOP(X̃)(π1(X,x)), the nor-

malizer of π1(X,x) in TOP(X̃). Note that N(π1(X,x)) ⊂ TOP(X̃) is the group
of all homeomorphism of X̃ which induce homeomorphisms on X. The normalizer
acts on π1(X,x) by conjugation yielding a homomorphism θ : N(π1(X,x)) −→
Aut(π1(X,x)). This induces a homomorphism into the outer automorphism group
ψ : TOP(X) −→ Out(π1(X,x)) yielding the commutative diagram of exact se-
quences.

1 −−−−−→ π1(X,x) −−−−−→ N(π1(X,x)) −−−−−→ TOP(X) −−−−−→ 1

θ

y θ

y ψ

y
1 −−−−−→ Inn(π1(X,x)) −−−−−→ Aut(π1(X,x)) −−−−−→ Out(π1(X,x)) −−−−−→ 1

Now with the action ρ : G→ TOP(X), we pull back the top exact sequence to get
(see section ??

1 −−−−−→ π1(X,x) −−−−−→ G∗ −−−−−→ G −−−−−→ 1y= ρ∗
y ρ

y
1 −−−−−→ π1(X,x) −−−−−→ N(π1(X,x)) −−−−−→ TOP(X) −−−−−→ 1

The top exact sequence is called the lifting exact sequence of the group action
(G,X); the action (G∗, X̃) is called the extended-G-lifting of (G,X). When the
lifting exact sequence splits (i.e., G∗ = π1(X,x)oG), the action (G, X̃) is called a
G-lifting of (G,X).

1.8.2 Exercise. Show that if Z2 acts on the circle groupG = S1 = {z ∈ C : |z| = 1}
by z 7→ z, then G∗ = ZoZ2 acts on R as in Example 1.4.7.

1.8.3 Proposition. Suppose G is a discrete group, acting properly on a completely
regular space X. Then the extended-G-lifting G∗ on the universal covering space X̃
is proper.

Proof. The universal covering will be completely regular. Since G\X is regular by
the property 1.2.3(5), and G∗\X̃ = G\X, we need only show that (G∗, X̃) is locally
proper. Let x̃ ∈ X̃ and x = ν(x̃), where ν : X̃ → X is the covering projection.

Take a Gx-slice U at x so small that ν−1(U) is an even cover and also so that
G×Gx U forms a tube about the G-orbit. If gx 6= x, then gU is a slice about gx and
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ν−1(gU) is an even covering of gU . Thus we get a tube around G∗(x̃) by taking⋃
g∈G

ν−1(gU). This is a disjoint union of homeomorphic copies of U , one for each

point on the orbit G∗x̃. Let W be the lift of U to x̃. Let 1→ Π → G∗x → Gx → 1
be the lifting sequence of the stabilizer Gx. Note that Gx is finite because (G,X)
is proper. For h ∈ Π ⊂ G∗x, if hW ∩W 6= ∅, then h = id. Therefore, the number
of elements h ∈ G∗x such that hW ∩W 6= ∅ is exactly the same as the order of Gx,
finite. �

1.8.4 Exercise. Suppose K is a normal subgroup of π1(X,x) and conjugation by
G∗ on π1(X,x) leaves K invariant. Then there is an induced action of G∗/K on
K\X̃. This action is proper if G is discrete acting properly on a completely regular
X. A proof follows from previous Exercise and 1.2.3 (8).

1.8.5 Remark. The lifting exact sequence can be made very explicit. Take x as a
base point, and for each g ∈ G, take a path pg ∈ P (X,x) so that pg(1) = gx. For
a point in b ∈ X̃, take a path pb ∈ P (X,x) representing b. A lift of g can be given
as follows: Define a path

(pg ∗ (g · pb))(t) =

{
pg(2t), 0 ≤ t ≤ 1/2,
g(pb(2t− 1)), 1/2 ≤ t ≤ 1

so that pg ∗ (g · pb) ∈ P (X,x). Then the map pb 7→ pg ∗ (g · pb) defines a map
X̃ → X̃, which is a lift of g : X → X. A careful description and construction of an
explicit lifting exact sequence as an extension of π1(X,x)/K and G can be found in
[?, §2]. The explicit and rather technical construction enables one to give a detailed
analysis of the group structure of G∗ in terms of the choice of the paths pg. The
explicitness then leads to several interesting applications.

If we assume that G has a fixed point at x, then pg can be chosen to be
the trivial path and one constructs the extended-G-lifting G∗ as π1(X,x)oϕG.
The automorphism ϕ : G −→ Aut(π1(X,x)) is induced from sending a loop class
[`(t)] ∈ π1(X,x) to the loop class [g(`(t))] ∈ π1(X,x). Thus, ϕ(g)([`(t)]) = [g(`(t))].
We examine this type of lifting in the next section.

1.9. Lifting an action of G when G has a fixed point

In this section, (G, (X,x), ϕ) denotes a topological group G acting on X to-
gether with a base point x which is fixed under the action of G. Each element
g ∈ G, considered as a continuous map g : (X,x) → (X,x), induces an automor-
phism g∗ : π1(X,x) −→ π1(X,x) by g∗[`(t)] = [g · `(t)]. Clearly, g 7→ g∗ defines a
homomorphism

G −→ Aut(π1(X,x)).
Observe—Frank?? that this homomorphism factors through G −→ G/G0, where
G0 is the path-component of G containing the identity element.

Furthermore, since x ∈ XG, G operates naturally on the space of paths issuing
out of x, P (X,x). We wish to explicitly describe the liftings of this action to
covering spaces. We shall always denote the base point of a covering space by the
equivalence class of the trivial path and denote it by x̂. We will denote ϕ(g)y by
g · y, for every y ∈ X.
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1.9.1 Theorem. [?, 3.1] If K ⊂ π1(X,x) is invariant under the action of G on
π1(X,x), then there is a covering action

(G, (XK , x̂)) ν−−−−→ (G, (X,x))

for which ν is G-equivariant. If K is normal in π1(X,x), then

g · (αŷ) = g∗(α)(g · ŷ)

for all g ∈ G, ŷ ∈ XK and α ∈ π1(X,x). The extended-G-lifting on XK is a
semi-direct product (π1(X,x)/K)oG which operates as

(α, g)(ŷ) = α(g · ŷ).

Thus,
1 −→ π1(X,x)/K −→ (π1(X,x)/K)oG −→ G −→ 1

is exact, where π1(X,x)/K is the deck transformation group of the covering space
XK −→ X.

Proof. G acts on P (X,x) leaving the trivial path fixed. The G-invariance of K
allows us to introduce the action on (XK , x̂): If p(t) represents the equivalence class
of a point ŷ in XK (a path issuing from x ∈ X), then g · ŷ is the equivalence class
of g · p(t).

To show that this is well-defined, suppose q(t) represents the same equivalence
class of the point ŷ in XK ; that is, [p(t) ∗ q(t)] ∈ K. Then,

[g · p(t) ∗ g · q(t)] = [g · (p(t) ∗ q(t))] ∈ g∗[(p(t) ∗ q(t))] ∈ g∗(K) = K,

which shows g · p(t) and g · q(t) represent the same point in XK .
Now let `(t) be a loop at x (representing α), then

g · (` ∗ p)(t) =

{
g · `(2t), 0 ≤ t ≤ 1/2,
g · p(2t− 1), 1/2 ≤ t ≤ 1.

= (g · ` ∗ g · p)(t)

which yields the formulas.
Let us now define an action of (π1(X,x)/K)oG on XK by

(α, g)ŷ = α(g · ŷ).

This defines an action because

(β, h)(α, g)(ŷ) = (β, h)(α(g · ŷ))
= β(h · (α(g · ŷ)))
= β(h∗(α)(h · (g · ŷ)))
= (βh∗(α))((hg) · ŷ)
= (βh∗(α), hg)(ŷ).

Also
ν((α, g)ŷ) = ν(α(g · ŷ)) = ν(g · ŷ) = g · ν(ŷ).

The map ν is equivariant under the homomorphism which projects (π1(X,x)/K)oG
onto its second coordinate. The lifting of G described above is just the restriction
to 1oG ⊂ (π1(X,x)/K)oG. This is clearly the full lifting sequence of all lifts of
G-actions covering the given G-action. �
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1.9.2 Proposition. Suppose G acts on X, leaving the normal subgroup K of
π1(X,x) invariant. Put F = XG, and E = (XK)G. Let α ∈ π1(X,x)/K, α 6= 1.
Then g∗(α) = α for all g ∈ G if and only if αE ∩ E 6= ∅. In particular, αE = E.

Proof. Suppose g∗(α) = α. Let ŷ ∈ E. Then g · (αŷ) = g∗(α)(g · ŷ) = g∗(α)(ŷ) =
αŷ. This implies αE ⊂ E. For ŷ ∈ E, consider α−1ŷ. Then g ·(α−1ŷ) = g∗(α−1)(g ·
ŷ) = α−1ŷ so that α−1E = E. Consequently, αE = E.

Conversely, suppose there exists ŷ = αẑ, with ŷ ∈ E and ẑ ∈ E. Then α(ẑ) =
ŷ = g · (ŷ) = g · (αẑ) = g∗(α)(g · ẑ) = g∗(α)(ẑ). Since α, g∗(α) are elements of deck
transformation, g∗(α) = α. �

1.9.3 Corollary. Suppose G acts on X, leaving the normal subgroup K of
π1(X,x) invariant. Put F = XG, and E = (XK)G. If Γ = {α ∈ π1(X,x)/K :
g∗(α) = α, for all g ∈ G}, then Γ\E = ν(E) ⊂ XG.

1.9.4 Lemma. Suppose G acts on X, leaving the normal subgroup K of π1(X,x)
invariant. Put F = XG, and E = (XK)G. Let Ex̂ denote the path component of
E that contains x̂ and Fx the path component of F = XG that contains x. Then
ν(Ex̂) = Fx.

Proof. Clearly ν(Ex̂) ⊂ Fx. Suppose y ∈ Fx and p is a path in Fx from x to y.
Then the lift of this path is a path starting at x̂ and ending at ŷ, where νŷ = y.
Since g ◦ p(t) = p(t) for each t, this lift is in Ex̂. So ν maps Ex̂ onto Fx. �

1.9.5 Corollary. Suppose G acts on X, leaving the normal subgroup K of
π1(X,x) invariant. Put F = XG, and E = (XK)G. If E is path connected,
then the image of π1(F, x) −→ π1(X,x)/K is the subgroup

Γ = {α ∈ π1(X,x)/K : g∗(α) = α for all g ∈ G} = (π1(X,x)/K)G.

If, in addition, Γ = π1(X,x)/K, then ν−1(Fx) = E.

Proof. We have Γ\E = Fx, the path component of F containing x. For α ∈ Γ,
if αx̂ = ŷ, then ŷ ∈ E and there is a path α(t) in E starting at x̂ and ending at
ŷ and representing α. Then ν(α(t)) is a loop in Fx based at x. This represents a
non-trivial element of π1(X,x)/K if and only if the image of this class does not lie
in K, or equivalently, x̂ 6= ŷ. Conversely, a loop ` in Fx based at x, lifts to a path
in E starting at x̂ and ending at α(x̂), where α ∈ Image(π1(Fx, x)) in π1(X,x)/K
is represented by `. If Γ = π1(X,x)/K, then ν−1(Fx) = E for α(x̂) is in E, for
each α ∈ Γ. �

1.9.6 Proposition. Suppose G is compact and acts on the locally compact Haus-
dorff X with fixed point, leaving the normal subgroup K of π1(X,x) invariant. Then
(π1(X,x)/K)oG = G∗ acts properly on XK .

Proof. Let C be a compact subset of XK . Then we want to show that closure
{(α, g) ∈ G∗ : (α, g)C ∩ C 6= ∅} is compact. We have {α ∈ π1(X,x)/K : α(G ·
C) ∩ (G · C) 6= ∅} is finite since π1(X,x)/K acts properly on XK and G · C is
compact. (It acts locally properly and X is Hausdorff). Every point in (α, g)C for
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evaluation mapany (α, g) ∈ G∗ is of the form αG ·C. If (α, g)C∩C 6= ∅, then α(G ·C)∩(G ·C) 6= ∅.
Hence we are essentially counting a finite number of copies of G. �

1.9.7 Example. [?, 3.7] Let X be a 2-sphere S2 and consider the rotation of
180o around the north-south axis. This action is equivariant with respect to the
antipodal map and so induces an action of Z2 on the projective plane P2 with fixed
point equal to an isolated point (the image of the poles) and a circle which generates
the fundamental group (the image of the equator). If we now lift this induced action
on P2 to its universal covering space, using the isolated fixed point as a base point,
we obtain an action equivalent to the original rotation about the polar axis. Notice
that E 6= π−1(F ) and E consists of only two points; π1(pt) → π1(P2) is surely
not onto. On the other hand, if we were to lift the action but based at one of the
points on the circle we would induce an action on S2 equivalent to reflecting across
the equator. In this case since E projects onto the component containing the base
point, and π1(Fx)→ π1(P2) is onto.

The reader may wish to further explore liftings of groups with fixed points
to covering spaces in [?] and in [?, Appendix]. For example, it is shown that
the number of connected components of the fixed set for a p-group action (G,M)
on spherical space-forms or aspherical manifolds is in 1 − 1 correspondence with
H1(G;π1(X)), the set of equivalence classes (cohomology classes) of crossed homo-
morphisms of G into the fundamental group π1(X).

1.10. Evaluation Homomorphism

We are also interested in getting a more precise description of lifting group
actions when G is path-connected.

Let G be a path-connected group acting on a path-connected Hausdorff space
X. Fix x ∈ X. The evaluation map evx : (G, e)→ (X,x) is defined by

evx(g) = g · x .

This induces the evaluation homomorphism

evx# : π1(G, e)→ π1(X,x) .

The main reference for the following is [?, §4]. We will see that in general the
image of π1(G, e) in π1(X,x) is a central subgroup of π1(X,x) and independent of
the base point.

1.10.1 Lemma. Let g ∈ P (G, e) and p ∈ P (X,x) (paths emanating from e and x,
respectively). Then the three paths

(A)

{
g(2t) · x, 0 ≤ t ≤ 1/2,
g(1) · p(2t− 1), 1/2 ≤ t ≤ 1

(B) g(t) · p(t), 0 ≤ t ≤ 1,

(C)

{
p(2t), 0 ≤ t ≤ 1/2,
g(2t− 1) · p(1), 1/2 ≤ t ≤ 1

are homotopic by fixed end-point homotopies.



22 1. TRANSFORMATION GROUPS

Proof. Schematically, we will have a diagram

Figure 2: middle:g(t) · p(t)

Introduce a path in P (G, e) by

(g ∗ cg(1))(t) =

{
g(2t), 0 ≤ t ≤ 1/2,
g(1), 1/2 ≤ t ≤ 1

and a path in P (X,x) by

(cx ∗ p)(t) =

{
x, 0 ≤ t ≤ 1/2,
p(2t− 1), 1/2 ≤ t ≤ 1,

(c denotes the constant path). Now g ∗ cg(1) ' g implies (g ∗ cg(1)) ·p ' g ·p relative
∂I. But (g ∗ cg(1)) ·p = (g ·p)∗ g(1) ·p is the path labeled (A), while g ·p is the path
labeled (B). Thus the path(A) is homotopic to (B) via a fixed end-point homotopy.
A similar argument relates (C) to (B). �

1.10.2 Theorem. The image of evx# : π1(G, e)→ π1(X,x) is a central subgroup of
π1(X,x) which is independent of choices of x.

Proof. Suppose g ∈ P (G, e) and p ∈ P (X,x) are closed loops. Then evx# is
induced by

g(t) 7→ g(t) · x.

Noting that g(1) = e and p(1) = x, we have

g(t) · x ∗ p(t) =

{
g(2t) · x, 0 ≤ t ≤ 1/2,
g(1) · p(2t− 1), 1/2 ≤ t ≤ 1

while

p(t) ∗ (g(t) · x) =

{
p(2t), 0 ≤ t ≤ 1/2,
g(2t− 1) · p(1), 1/2 ≤ t ≤ 1.

In view of Lemma 1.10.1, these two loops represent the same element of π1(X,x),

[g] · [p] = [p] · evx#([g]),

thus the image of evx# lies in the center of π1(X,x).
Let y be another point in X and C a path from x to y. Then C induces an

isomorphism C# : π1(X, y) −→ π1(X,x) by sending a loop ` based at y to a loop
C ∗ ` ∗ C based at x. If `′ = g(t) · x, with ` = g(t) · y, then C ∗ ` ∗ C ' `′ (for the
homotopy just moves along C). Choosing a different path C ′ will send ` to a loop
homotopic to `′. Therefore, evx∗(π1(G, e)) is independent of choice. �



1.11. LIFTING CONNECTED GROUP ACTIONS 23

1.11. Lifting Connected Group Actions

1.11.1 Theorem ([?, §4], [?, Chapter I, §9]). let G be a path-connected topological
group acting on a space X which admits covering space theory. Let K be a normal
subgroup of π1(X,x) containing the image of evx# : π1(G, e) → π1(X,x) and put
Q = π1(X,x)/K. Then

(1) The G-action on X lifts to a G-action on XK which commutes with the
covering Q-action.

(2) If in addition, X is completely regular, G is a connected Lie group acting
properly on X, then the G-action on XK is proper and the induced action
of Q on W = G\XK is also proper.

♣
Consequence of pre-
vious theorems??

Proof. (1) The G-action on XK is described as follows. Given u ∈ G and x̂ ∈ XK ,
select a path g ∈ P (G, e) with g(1) = u, and choose a path p which represents x̂.
We define u · x̂ to be the common equivalence class of the three paths listed in
Lemma 1.10.1. In particular, u · x̂ is represented by a path (g ·x)∗ (u ·p) connecting
x and u · y, where y = p(1). Suppose g′ ∈ P (G, e) also has g′(1) = u, and p′ also
represents x̂. Then

((g · x) ∗ (u · p)) ∗ (g′ · x) ∗ (u · p′) ' (g · x) ∗ ((g′ · x) ∗ (g′ · x)) ∗ (u · p) ∗ (u · p′) ∗ (g′ · x)
' ((g ∗ g′) · x) ∗ ((g′ · x) ∗ u · (p ∗ p′) ∗ (g′ · x)).

Since K contains image{evx# : π1(G, e)→ π1(X,x)}, (g∗g′)·x represents an element
of K.

Now consider the path (g′ ·x)∗u ·(p∗p′)∗(g′ ·x) = (g′ ·x)∗g′(1) ·(p∗p′)∗(g′ ·x).
The map

F (t, s) = (g′(st) · x) ∗ g′(s) · (p(t) ∗ p′(t)) ∗ (g′(st) · x)
gives a homotopy from F (t, 0) = p(t)∗p′(t) to F (t, 1) = (g′ ·x)∗g′(1)·(p∗p′)∗(g′ ·x).
Also, since p ∗ p′ represents an element of K, the definition of u · x̂ does not depend
on the choices of g and p.

Recall that the covering action of Q on XK is induced from the action of
π1(X,x) on X̃ by juxtaposition. Suppose α ∈ π1(X,x) is represented by a closed
loop ` at x. By Lemma 1.10.1, the part 0 ≤ t ≤ 3/4 of the two paths

g(2t) · x, 0 ≤ t ≤ 1/2,
u · `(4t− 2), 1/2 ≤ t ≤ 3/4,
u · p(4t− 3), 3/4 ≤ t ≤ 1;

and 
`(2t), 0 ≤ t ≤ 1/2,
g(4t− 2) · x, 1/2 ≤ t ≤ 3/4,
u · p(4t− 3), 3/4 ≤ t ≤ 1.

are equivalent so that u · (α · x̂) = α · (u · x̂) in XK . This shows the G action and
Q action on XK commute with each other. We have not used complete regularity
or that G is a Lie group so far, but these assumptions are needed for (2).

(2) Let the equivalence class of β : (I, 0, 1) → (X,x, y) represent a point ŷ
in XK . We will show that the G-action on XK is locally proper at ŷ. Since the
G-action on X is proper, we can choose a slice Sy at y which we can assume to
be path-connected and small enough so that when we lift a neighborhood of y to
XK at ŷ, the slice lifts homeomorphically to Ŝ. The stabilizer of ŷ is Gŷ ⊂ Gy.
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By continuity and the G-equivariance of ν, Ŝ is Gŷ-invariant. In fact, the map

GŜ
ν−→ GSy

f−→ G/Gy is G-invariant and (f ◦ ν)−1(Gy) gives a Gy-kernel. (Here
f is the G-invariant map defining the Gy-slice at y and ν denotes the restriction
of ν to GŜ). (f ◦ ν)−1(Gy) will be disjoint copies of Ŝ, one for each element of
Gy/Gŷ which is a finite group since Gy is compact, Gŷ is a closed subgroup and
Gy/Gŷ is isomorphic to a subgroup of the discrete group Q. In other words, we
get a Gy-slice (an H-slice, H = Gy), ∪

g∈Gy/Gŷ
gŜ), in XK . This slice Gy/Gŷ disjoint

covering of the slice Sy at y ∈ X.
Now since X is completely regular, we need only show that (G,XK) is locally

proper at the arbitrary point ŷ. But this is clear as G ×Gŷ Ŝ is an open path-
connected G-invariant tube about the orbit Gŷ which covers the tube G ×Gy Sy.
Therefore we have Ŝ is a Gŷ-slice at ŷ.

The action of G∗, the group of homeomorphisms generated by the commuting
groups G and the covering transformations Q is also locally proper because (f ◦
ν)−1(G×Gy Sy) is a G∗-invariant disjoint union of components each homeomorphic
to the component GSŷ = GŜ. Consequently, the action of Q on W = G\XK is also
proper by 1.2.3 (8). �

1.11.2 . If ν : (X ′, x′) → (X,x) is a covering projection of the G-space X with
ν∗(π1(X ′, x′)) = K ⊃ evx∗(π1(G, e)), then we can construct the lift of the G-action
on X ′ by lifting the paths used in the construction of (G,XK) to X ′. We may then
easily see what happens if we choose a different base point to lift paths.

Choose base points y′ ∈ X ′ such that ν(y′) = y ∈ X. Take a path β :
(I, 0, 1) −→ (X ′, y′, x′). If b is a point in X ′, then let γ : (I, 0, 1) −→ (X ′, x′, b).
Then gb is given by the lift of the path ν(γ(t)) ∗ g(t) · ν(γ(1)) with initial point
x′. The point b can also be represented by the end point of β(t) ∗ γ(t). Then g(b)
using y′ and y as base points is represented by the lift of the paths γ(β(t) ∗ γ(t)) ∗
g(t)ν(γ(1)) with initial point y′. Thus we see that we have the same image gb. So
our lifting construction can be described at any base point and the lifted G-action
is independent of the choice of the base point.

1.11.3 Remark. Suppose G is path-connected and acts on X with fixed point x,
and on π1(X,x) leaving the normal subgroup K invariant. Then the lifted action
of G described in section 1.10 and section 1.11 are identical. In particular, G∗ is
just G×Q, since it is a commuting semi-direct product.

1.11.4( Examples of lifting actions). (cf. Example 1.9.7) (1) Consider the standard
action of S1 on the 2-sphere S2 by rotation around the axis joining the north and
south poles. The action of Z2 by antipodal map commutes with the S1 action.
Thus, the S1 action induces an action on RP2 = S2/Z2.

For the action (S1,RP2), the evaluation homomorphism

evx∗# : π1(S1) = Z→ Z2 = π1(RP2)

is trivial. [So it lifts to the 2-sphere S2, and it lifts to the standard rotations about
the polar axis. The N and S poles project to the fixed point set.] The projective
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line (corresponding to the “boundary” of identification of the disk lifts to a semi-
circular arc. On RP2 this orbit has Z/2 stabilizer and so on RP2 when e2πit(a) has
gone from a to a as 0 ≤ t ≤ 1

2 the lifted action has gone 1
2 around the equator.

On RP2 we have a section (an arc going from 0 to a) and on S2, there is a section
from N to S on which the covering transformation acts and “covers” the section
on RP2. Check explicitly that the lifts are independent of the base points in RP2.

(2) SO(3) action on RP3. Since RP3 ≈ SO(3), SO(3) acts on RP3
∼= SO(3) as

just left translation. Moreover evx# : Z2 → Z2 is an isomorphism. So this action
cannot be lifted to an action on S3.

However, S3 = Spin(3) doubly covers as a group SO(3), and Spin(3) is simply
connected. So the non-effective action of S3 on RP3 via S3 → SO(3) can be lifted
to S3. On S3 it is a free transitive action.

(3) Let us try the S1 action on the Klein bottle K which is just the induced S1

action as we put together equivariantly two S1 actions on two copies of the Möbius
band.

By Van Kampen’s theorem, {a, b, t | t = a2 = b−2} = {a, b | a2b2 = 1}. Now
the center is generated by t which is also a generator of evx#(π1(S1)). We can lift
now all the way up to KZ with π1(KZ) ∼= Z, but no further. This is an annulus
KZ = S1 × R and the action is free and just translates along the first factor.

The orbit space of this S1 action is R and there is an action of π1(K)/im(evx∗) ∼=
Z2 ∗ Z2

∼= ZoZ2 on R. This induced action on R is just the action of the infinite
dihedral group: (n, ε)(x) = εx+ n, ε = ±1. The orbit space is an interval which is
identical with the orbit space of the S1-action on the Klein bottle. The covering
action on S1 ×R1 is given by the isotropy groups on the Klein bottle (n, ε)(z, x) =
(εz, εx+ n).

1.11.5 Example.
♣

We will sketch what happens with S1 actions on the connected To “Appendix” to
the endsums of S2×S1. There is an action of S1 on S2×S1 obtained by rotating S2 about

its north and south pole and acting trivially on the second factor. Clearly the orbit
space is an {arc}×S1, an annulus with the boundary corresponding to the 2 circles
of fixed points. Conversely, if S1 acts on a space such that an annulus is its orbit
space and all orbits are free in its interior and fixed on the boundary, the action
must be equivalent to that just described. For, over the interior, the action is free
and so the space is a bundle over S1 × (0, 1). All such principal S1 bundles are
trivial since they are classified by the elements of H2(S1×R;Z) = 0. Thus there is
a section to this product space S2×R1. With care, this section can be modified so
that it extends to all of S1 × I. Basically we are then dealing with a free action on
S1 × (S1 × I) with the action just translation on the first factor. But we collapse
each orbit over the points on S1×0 and S1×1 to a point. This gives us the required
action on S2 × S1. There is a 3-cell, invariant tubular neighborhood about a point
on the fixed set. This can be represented as the inverse image of the orbit mapping
of the shaded region in the orbit space as shown.

Let us take 2 copies of S2 × S1, remove the interiors of an invariant 3-ball and
match equivariantly their boundaries by an orientation reversing homeomorphism
as shown. This gives us an S1-equivariant connected sum of S2×S1 with S2×S1.
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Figure 3: E1–1

Figure 4: E1-2

We can do this any number of times, say n > 1, getting Mn = S2×S1# · · ·#S2×S1

whose orbit space is a disk with n-holes and n + 1 boundary components, corre-
sponding to the n+ 1 circles of fixed points.

We may describe all the S1 actions on Mn, n ≥ 0, as follows. Take an oriented
compact surface A of genus g with k(> 0) boundary components such that 2g +
k−1 = n. Form S1×A and let S1 act as standard rotations on the first factor and
trivially on the second factor. The boundary consists of S1 × ∂A. Now if we take
each orbit S1 · a, where a ∈ ∂A and collapse it to a distinct point, we obtain on
the identification space an S1-action with exactly k connected components of fixed
points homeomorphic to the boundary curves on A. The action is free elsewhere.
To see that this space is homeomorphic to Mn, let us take a punctured torus for A
written as:

A′: picture 1

Make the construction above to create M . Above the dotted line we have an
S1-invariant 2-sphere. Cut open the 3-manifold along this 2-sphere and add two
S1-invariant 3-balls. The action on each of the 3-balls being just the cone of the
S1 action on the boundary 2-sphere. The S1 action now extends to this new 3-
manifold. It has now two boundary components of fixed points and the orbit space
looks like

ab, a′b′: picture 2

which is an annulus and from the argument as before is diffeomorphic to S2 × S1.
Now we can reconstruct our original M by just removing the interiors of the S1-
invariant 3-balls and identifying equivariantly the boundaries. This operation is
connected sum with S2 × S1. So our M ′ = M2 = S2 × S1#S2 × S1. This action
on M2 is different from the one obtained using A, a twice punctured disk, since the
orbit spaces are different.

To identify M with Mn, we just observe that any A can be obtained from doing
boundary connected sums with an annulus or a punctured torus with one boundary
component. The corresponding Mn is obtained by doing the corresponding S1-
equivariant connected sums.

Choosing a fixed point as base point, the S1-action can be lifted to an S1-
action on the universal covering M̃n. If n = 1, this is clearly S2×R1 with fixed set
{N} ×R ∪ {S} ×R with {N} and {S} being north and south poles. Each of these
copies of R1 covers a component of the fixed set {N} × S1 ∪ {S} × S1 of S2 × S1.
For n > 1, we get π1(Mn) = Z ∗ · · · ∗ Z, free product of n copies of Z. M̃n is a
simply connected 3-manifold with a semi-free S1-action.

We use 3 facts from transformation groups:
(1) If G is connected, ν∗ : π1(X,x)→ π1(G\X,x) is always onto.
(2) If G has a fixed point, then ν∗ is onto.
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(3) If I is an arc in G\X, X completely regular, and G acts properly, then
there exists an arc I∗ in X, ν : I∗ → I a homeomorphism and ν−1(I) =
G × I∗/ ∼ where the identification is made as follows. If y∗ ∈ I∗, then
the points on G(y∗) are identified to G/Gy∗ . (An arc I is supposed to be
homeomorphic to unit interval {t : 0 ≤ t ≤ 1}.)

The orbit space S1\M̃ = W is simply connected by (1). By the nature of the
slice theorem, S1\M̃ is a (simply connected) 2-manifold with boundary components
comprised of the fixed orbits on M . Thus S1\M̃ − {boundary} is an open 2-cell
and the S1-action is free over this open cell. Hence as it is a principal S1-bundle,
it must be a product S1-action. Thus M̃ − {fixed set} is S1-equivalent to S1 × R2

where action is just translation along the first factor. There is a section, over the
open 2-cell, to this principal S1-action. With care this section extends over the
entire boundary of W . What this says is that we can reconstruct (S1, M̃) by taking
S1 ×W and collapsing each S1 × b to a point, where b is a boundary point of W .
This is equivalent to the standard circle rotation about the z-axis except that we
must delete a closed subset C from the z-axis so that (z-axis−C) is homeomorphic
to M̃s1 .

On W there is induced a proper action of the free product of n copies of Z. All
such actions are “geometric” in the sense that they are equivalent to an action of
isometries on the hyperbolic plane extended to the boundary of components of W .
The quotient is the surface A of genus g with (k + 1) boundary components and
n = 2g + k − 1. Schematically we have:

(S1,R3 − C)
S1\−−−−→ (

n∗Z,W )

ν

yn∗Z\ yn∗Z\
(S1,M)

S1\−−−−→ S1\M
as a commutative diagram of orbit mappings. The so-called “geometry” on M −
{fixed set} is an R×H-geometry if n > 1, and on M , we will show later that it has
a flat conformal structure.

♣
Later...

1.11.6 Example. Let S3 be the unit sphere in C2. Let us parametrize it by taking

S3 = {(ρz1, (1− ρ2)1/2z2) : z1, z2 ∈ S1, 0 ≤ ρ ≤ 1}.

Note ρ2z1z1 + (1 − ρ2)z2z2 = 1, 0 ≤ ρ ≤ 1. For a fixed ρ 6= 0 or 1, (ρz1, (1 −
ρ2)1/2z2) = Tρ is a torus. If ρ = 0 or 1, T0 = {(0, z2)} and T1 = {(z1, 0)} are
circles. Define an effective action of S1 × Zp on S3 by

(z, λs)(ρz1, (1− ρ2)1/2z2) = (ρz1λ
s, (1− ρ2)1/2zλsqz2)

where λ = e
2πi
p , z ∈ S1, 0 < q < p, (p, q) = 1. The action of Zp is free and Zp\S3,

the quotient 3-manifold is called the (p, q)-lens space and is denoted by L(p, q).
The action of S1 on S3 is semi-free. That is, it is free away from the circle fixed set
{(z1, 0)}. The orbit space of this S1-action is a 2 disk with the fixed set projecting
onto the boundary. Note each fixed ρ-level Tρ is S1 × Zp-invariant and if ρ 6= 0
or 1, the action is free. The quotient by Zp is again a torus and the quotient by
S1 is a circle. The part ∪

0≤ρ≤ 1
2

Tρ is a solid torus with {(0, z2)} the core circle and
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∪
1
2≤ρ≤1

Tρ is a complementary solid torus. Thus L(p, q) is again the union of 2 solid

tori V0 ∪ V1, where

V0 = Zp\

(
∪

0≤ρ≤ 1
2

Tρ

)
, V1 = Zp\

(
∪

1
2≤ρ≤1

Tρ

)
.

On L(p, q) there is induced an action of S1, which is free whenever ρ 6= 0 or
1. On Zp\T0, this is a single S1 orbit with stability group isomorphic Zp. On
Zp\T1, the circle is fixed by the S1-action. On V0, the action is equivalent to
(S1, S1 ×S1〈0,1〉 D

2) where D2 is the 2-disk and S1
〈0,1〉 is the stability group of

the image of S1
(0,1) in L(p, q). This is isomorphic to Zp ⊂ S1 and it operates

diagonally as λ · (z, u) 7→ (zλ−1, λsu), where u ∈ C, ‖u| ≤ 1. The quotient space is
S1\(Zp\S3) = Zp\(S1\S3). So it is a disk with the boundary corresponding to the
fixed set and an interior point which is the image of the core circle of V0. In terms
of the orbit mapping, we have

(S1 × Zp, S3)
Zp\−−−−→ L(p, q)

S1\
y yS1\

D2 Zp\−−−−→ Zp\D2= S1\L(p, q) = (Zp × S1)\S3

Thus the lift of the (S1, L(p, q)) to S3 is just rotation about the z-axis in R3 ∪
∞ = S3. Let us denote the orbit space Zp\L(p, q) by L̂(p, q). Suppose we have
(S1, L(p, q)) and (S1, L(p′, q′)), two actions with orbit spaces L̂(p, q) and L̂(p′, q′). If
we take the inverse images of the shaded parts in the orbit spaces we get an invariant
closed 3-cell in each lens space. We can then delete the interior of these cells and
match S1-equivariantly the boundaries of these cells by an orientation reversing
homeomorphism. We get an equivariant connected sum. Now on L(p, q)#L(p′, q′),
there is constructed an S1-action with a circle of fixed points and all the other
orbits are free except for 2 circles which were the cores of the respective Vi’s. The
orbit space is again a disk.

Figure 5: E2-4

The fundamental group of L(p, q)#L(p′, q′) is Zp ∗Zp′ by the Van-Kampen the-
orem. Obviously we may continue to take equivariant connected sums constructing
S1-actions on L(p1, q1)# · · ·#L(pn, qn) = M with orbit space a disk and n singular
orbits and one circle (boundary) of fixed points.

Now if we wish to lift this S1-action to its universal covering M̃ , we must have
a non-compact universal covering if n 6= 1. The fixed set in M̃ projects onto the
fixed set in M .

The stability groups of the S1-action at ŷ must be a subgroup of the stability
groups at y. Therefore if ŷ has finite stability, it must be cyclic and order divides
pj for some j.

We shall sketch the lifted action on the universal covering space. Details can
be found in [?]. If we take an arc p(t) as shown in S1\M ,
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Figure 6: E2-5

we can lift this path to an arc r(t) such that S1(r(t)) is the complete inverse image
under the orbit mapping of p(t). It is a 2-disk with boundary identified by a period
pj homeomorphism. If ν(ŷ) = y ∈ M , where S1

y = Zpj , then S1
ŷ is cyclic of order

dividing pj . Lifting an arc from M to M̃ as we did from S1\M to M to obtain an arc
whose S1-image is a disk with boundary identified by a homeomorphism of period
equal to the order of S1

ŷ . If this order is not 1, then this disk with identifications C
carries non-trivial torsion in its second cohomology which will be impossible as a
simply connected 3-dimensional manifold [0 → H2(C) → H3

c (M̃ − C) → Z → 0 is
exact and H3

c (M −C) is torsion free.] Therefore the action of S1 on M̃ is semi-free
(all orbits are free or fixed). This enables one to prove a cross-sectioning theorem.
The orbit space S1\M̃ is a simply connected 2-manifold with boundary the fixed
points. It therefore is a disk with a closed set removed from the boundary. The
cross sectioning theorem tells us that (S1, M̃) is smoothly equivalent to R3 with a
closed set removed from the z-axis and S1 rotates the yz-plane, y > 0, about this
deleted z-axis.

The fundamental group π1(M) ∼= Zp1 ∗· · ·Zpn commutes with the S1-action on
M̃ and so acts effectively on S1\M̃ , a 2-disk with part of the boundary removed.
This action is smoothly equivalent to a proper discrete action on the unit disk with
parts of the boundary removed. On the interior, it actually is smoothly equivalent
to hyperbolic isometries or equivalently to a holomorphic action. The quotient
space being the disk with n exceptional points in its interior (= S1\M).

We may reconstruct the action on L(2, 1)#L(3, 2) from an S1 action on S3 as
follows. Take S1 × S3 → S3 as defined by

z × (ρz1, (1− ρ2)1/2z2) 7→ (z2ρz1, z
3(1− ρ2)1/2z2).

This gives a “linear” circle action on S3 which is free away from (z1, 0) and (0, z2).
On these 2 circles it has stabilizer Z3 and Z2 respectively. If we take a free orbit
and remove an S1 invariant cube about it and sew in equivariantly S1 ×D2 with
S1-action just rotating on the second factor, we get an action of S1 on M3 with
a circle of fixed points, 2 orbits with stabilizer Z3 and Z2 and the rest free. It
is shown in [?] that M3 = L(3, 2)#L(2, 1), and removing the set of fixed points
is just S3 − {a single free orbit}. Since this orbit lies in a torus, it follows that
M3 − {fixed points} is just the complement of the (2, 3) torus knot in S3.

We have described a circle action on S3 with fixed points. The other possible
circle actions (up to equivalence) are obtained as follows:

z × (ρz1, (1− ρ2)1/2z2) 7→ (zpρz1, z
q(1− ρ2)1/2z2), (p, q) = 1.

Note that each of free cyclic actions yielding lens spaces are inside some S1-action.
This action has stabilizer Zp if ρ = 1 and Zq of ρ = 0. Away from the 2 core circles
of the union of the 2 solid tori forming the 3-sphere, each orbit is free and lies on
one of the S1 invariant tori Tρ. The orbit is a (p, q) torus knot. In fact this action
is nothing but the action defined in subsection 1.11.4(5) (on Brieskorn varieties) for
S3 except that here we use a join representation of S3.
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1.11.7 Remark. It is clear, that in the presence of fixed points, we can do a
boundary connected sum of the orbit spaces A in Example 1.11.5 with those of
figure 6. In this way, we get an S1 action on a connected sum of S2×S1’s and lens
spaces. In [?] it is shown that this is the only possible way that S1 can operate
with fixed points on a closed orientable 3-manifold. Further, of these 3-manifolds,
only S3 and S2 × S1 admit effective S1 actions without fixed points. Thus, if S1

acts effectively on a closed oriented 3-manifold M with fixed points, then M is
homeomorphic to a connected sum of lens spaces and S2 × S1’s.

♣
Upto here to “Ap-
pendix” or Remove

1.12. Slice Representations

In section 1.9 we discussed lifting actions when the action had fixed points and
in section 1.11 when the group was path-connected. If G is path-connected and,
a closed subgroup H ⊂ G fixes x ∈ X, then H may be lifted by the method of
section 1.9 and also by the method of section 1.11. Exactly how these liftings may
be compared is the subject of this section.

1.12.1 Lemma ([?, Lemma 4.5]). Let X be a path-connected space; G a path-
connected topological group acting on X. Let H be a closed subgroup of G fixing
x ∈ X. Then there is a natural homomorphism ψ : H −→ π1(X,x)/Im(evx∗) such
that

h∗(α) = ψ(h) α ψ(h)−1 for all h ∈ H, and α ∈ π1(X,x),
where h∗ ∈ Aut(π1(X,x)/Im(evx∗)) is induced by h∗ ∈ Aut(π1(X,x)) given by
h∗([`(t)] = [h · `(t)].

Proof. Let h(t) ∈ P (G, e) such that h(1) = h ∈ H ⊂ G. Then by examining the
homotopy diagram as in subsection 1.10.1

we have `(t) ∗ h(t) · x ' h(t) · x ∗ h(`(t)). Consequently, h(t) · x ∗ `(t) ∗ h(t) ·
x ' h(`(t)) represents h∗(α). If h(t) · x represents βh ∈ π1(X,x), then h∗(α) =
β−1
h αβh. To see that this is well defined, let h′(t) ∈ P (G, e) with h′(1) = h. Then
h′(t) · x represents β′h ∈ π1(X,x) and βhβ

′−1
h ∈ Im(evx∗) ⊂ Z(π1(X,x)). Therefore

β′
−1
h αβ′h = β−1

h αβh and so h∗(α) = β−1
h αβh is a well defined formula.

The function h 7→ βh is not well defined as an element of π1(X,x) but it is well
defined by taking the π1(X,x)/Im(evx∗)-path class of h(t) · x. Therefore, we define
ψ : H → π1(X,x)/Im(evx∗) by

ψ(h) = [β−1
h ].

Examine the homotopy diagram

Figure 7: middle: h1(t) · h2(t) · x

which is obtained from section 1.10.1 by g(t) = h1(x) and p(t) = h2(x) · x. Note
that h1(t) ·h2(1) ·x = h1(t) ·x. This shows that ψ is a homomorphism. The formula
h∗(α) = ψ(h) α ψ(h)−1 is clear from the construction. �
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1.12.2 Corollary. Let (G,X) be an action of a path-connected topological group
on a path-connected space with H, a closed subgroup of G, fixing x ∈ X. Let K be
a normal subgroup of π1(X,x) containing the image of evx# : π1(G, e) → π1(X,x).
Let Q = π1(X,x)/K. Then there is a natural homomorphism ψ : H −→ Q such
that

h∗(α) = ψ(h) α ψ(h)−1 for all h ∈ H, and α ∈ π1(X,x),

where h∗ ∈ Aut(Q) is induced by h∗ ∈ Aut(π1(X,x)) given by h∗([`(t)] = [h · `(t)].

1.12.3. Since H leaves K invariant and K ⊃ Im(evx∗), we may lift the H-action on
XK by the method of section 1.9. Denote this lifted H-action by

h× ŷ 7→ h � ŷ.

H also lifts by the method of section 1.11, to the restriction of the lifted G-action
to H. This will be denoted, as usual, by

h× ŷ 7→ h • ŷ.

Let p(t) ∈ P (X,x) represent ŷ; h(t) ∈ P (G, e) is a path in G from e to h. Then

h � ŷ is represented by h · p(t),
h • ŷ is represented by h(t) · p(t).

Considering the homotopy diagram
Diagram

we get the

1.12.4 Lemma. h � ŷ = h • (ψ(h) · ŷ).

Consider the homotopy diagram

This shows
(h(t) · x) ∗ (h · p(t)) ' h(t) · p(t),

which implies ψ(h)−1 · (h � ŷ) = h • ŷ. Thus, h � ŷ = ψ(h) · (h • ŷ) = h • (ψ(h) · ŷ).

1.12.5. Let ρ : (G,XK)
G\−→ (G\XK) = W denote the orbit mapping. If ŷ ∈ XK ,

put ρ(ŷ) = w. Since the covering transformations Q = π1(X,x)/K commutes with
the lifted G-action, there is induced a Q-action on W , denoted by α × w 7→ α · w,
and ρ is Q-equivariant as well as G-equivariant (using trivial G-action on W ). H
also acts on W via ψ : H → ψ(H) ⊂ Q.

1.12.6 Proposition. ρ : (H,XK , �) −→ (H,W,ψ) is an equivariant map.

For, ρ(h � ŷ) = ρ(h • (ψ(h) · ŷ)) = ρ(ψ(h) · (h • ŷ)) = h · w = h · ρ(〈ŷ〉). �
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locally injective 1.12.7 Corollary. Let (G,X) be as above with G a connected Lie group acting
properly on a completely regular X which admits covering space theory. Let x ∈ X,
and K ⊃ Im(evx∗). Assume Gx̂ = 1, x̂ ∈ XK , ν(x̂) = x and w = 〈x̂〉 ∈W = G\XK .

Then Gx
ψ−→ Qw is an isomorphism and there exists slices Sx at x and Σw at w

such that the slice actions are Gx-equivalent.

Proof. Let Sx be a slice at x and assume it is path-connected and sufficiently
small as to be included in an evenly covered neighborhood. Then Sx lifts home-
omorphically to a slice Sx̂ at x̂. Put Gx = H, then H action on Sx lifts exactly
to the (H, �) action on Sx̂, by: y 7→ hy lifts to ŷ 7→ h � ŷ. Put ρ(Sx̂) = Σw. Σw
is a slice at w and ρ(h � ŷ) = ψ(h) · ρ(ŷ) = h · ŷ. Note as Gŷ ⊂ Gx̂ for ŷ ∈ Sx̂,
ρ : Sx̂ −→ Σw is an H-equivariant homeomorphism. �

1.12.8 Remark. Note also if the (G,X) action is smooth, analytic or holomorphic,
then

Sx −→ Sx̂ −→ Σw
are also smoothly, analytically or holomorphically equivalent.

In the smooth case, the slice representations (Sx is a cell, normal to the orbit
at x) are smoothly equivalent to linear representations, and it can easily be shown
that as linear representations, they are linearly equivalent.

If Gx 6= 1, then Qw = ψ(Gx) ∼= Gx/Gx̂ and (Gx, Ŝx̂) factors as

(H,Sx̂) =(Gx, Sx̂)
Gx̂\−−−−→ (Gx/Gx̂, Gx̂\Sx̂)= (ψ(Gx),Σw)

ν

y yψ(Gx)\

(Gx, Sx) Gx−−−−→ Gx\Sx
It is significant to note that when (G,XK) is a principal action, then the stabilizers
of the Q-action on W encodes all the slice information of (G,X). We shall address
the reverse of this procedure in a later chapter. Namely, if we are given (Q,W )
acting properly with Q discrete, and Y → W a fixed principal G-bundle, then we
can ask how may we construct a covering Q-action on Y which commutes with
the principal G-action. This reverse process may or may not be possible, and if
possible, it may not be unique.

1.12.9 Exercise. The two H-actions on XK in subsection 1.12.3 are subgroups of
the group, (π1(X,x)/K)oH, generated by all lifts of the H-action on X. Determine
explicitly these two subgroups in (π1(X,x)/K)oH. [cf. Exercise ?? .]

1.12.10 Definition. Suppose a path-connected G acts on X admitting covering
space theory. If, at each x ∈ X, ψ : Gx → π1(X,x)/Im(evx∗) is a monomorphism,
then (G,X) is called a locally injective G-action.

1.12.11 Proposition. Let (G,X) be a locally injective action of a connected Lie
group on a space X. Suppose that

Q = π1(X,x)/Imevx∗(π1(G, e))

is torsion free. Then the G action must be free.
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classifying spaceProof. Let y ∈ X, then Q′ = π1(X, y)/Imevy∗(π1(G, e)) is isomorphic to Q and so
Q′ is torsion free. Since (G,X) is locally injective, ηy : Gy → Q′ must be injective.
Since Gy is finite, Gy = 1G. �

1.12.12 Proposition. If (G,X) is a locally injective G-action, then the lifted G-
action (G,XIm(evx∗)

) is a free action and conversely. Moreover, if G is a Lie group
acting properly on X, then (G,XIm(evx∗)

) is proper so the action is a principal G-
action on XIm(evx∗)

.

Proof. Pick a base point x ∈ X and let H = Im(evx∗). Then (G,X) lifts to
(G,XH) and put x̂ to be the path class of the constant loop at x. We have seen
ψ(Gx) = Qρ(x̂) ⊂ π1(X,x)/H. The kernel is easily seen to be Gx̂ but this by
hypothesis is trivial. For each y ∈ X, Gy → π1(X, y)/Im(evy∗) is also monic. We
get around using the x and x̂ for base point of XH by appealing to subsection 1.7.1
and 1.11.2. And so we have ψ : Gy → Qρ(ŷ) is an isomorphism implying Gŷ is also
trivial. In order that (G,XH) be a principal G-action, we just need to observe, by
Theorem in 1.11.1, that the action is proper if (G,X) is proper.

The converse is also true. If Π centralizes `(G) and Π acts as covering trans-
formation, then the G-action on X must be locally injective. Note here G is not
necessarily T k or SU(n). It can even be non-compact (e.g., C∗). �

We remark that free actions are always locally injective. Also, injective toral
actions (see section 1.14 for a definition) are locally injective, but locally injective
toral actions are not necessarily injective toral actions. Any T k action with a global
H-slice where H is a finite subgroup of T k is an injective T k action. For example,
the C∗ and S1 actions C∗×Cn−V −→ C

n−V , S1×S2n−1−K −→ S2n−1−K, from
Example 1.4.8, have global Za slices. However, the extended action (S1, S2n−1) has
finite isotropy but is not locally injective.

1.12.13 Proposition. Suppose P is a principal G-bundle where G is a connected
Lie group, and Π ⊂ TOPG(P ) is a group of covering transformations of P acting
properly, that centralizes `(G) and `(G) ∩ Π = 1. Then the induced G-action on
Π\P = X is locally injective.

Proof. Since Π commutes with `(G), there is induced a G-action on Π\P = X,
which is covered by `(G) on P . Because G is connected, this lift is the unique lift
to P covering the induced G-action on X. Therefore, pi1(G, e)→ evx∗(π1(G, e)) ⊂
π1(P, x̂). We have seen that Gx → π1(P, x̂)/Im(evx∗) is a monomorphism in section
1.12.7. Since the choice of x is arbitrary, the G-action must be locally injective. �

1.13. Classifying Spaces

1.13.1. Let us recall some facts about classifying spaces for principal G-bundles.
Good references are Steenrod’s book [?] and Dold’s paper [?].

For a topological group G, we have a principal G-bundle EG −→ G\BG = BG,
called the universal G-bundle. All the principal G-bundles over a paracompact X
(or numerable principal G-bundles over arbitrary W ) are obtained by pulling back
the universal G-bundle EG → BG by a continuous map from W into BG. Any two
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Borel space pullbacks f∗(EG) and g∗(EG) are equivalent principal G-bundles if and only if, f
is homotopic to g. Thus the set of equivalence classes of principal G-bundles over
W is in one-one correspondence with the elements [W,BG], the homotopy classes
of maps from W into BG.

Let (G,X) be a G-space and EG a contractible space on which G acts freely and
properly. A technique due to A. Borel for studying G-actions is the so-called Borel
space EG ×G X associated to the G-space X. On EG × X, there is the diagonal
G-action given by

g(e, x) = (ge, gx).
We define the Borel space to be the quotient space G\(EG × X). This is usually
written as either EG ×G X or XG. This leads to the commutative diagram:

X
π2←−−−− EG ×X

π1−−−−→ EGy yG\ yG\
G\X π2←−−−− EG ×G X = XG

π1−−−−→ BG

where π1 is a fiber bundle mapping with fiber X and structure group G/K where
K is the ineffective part of the G action on X, π2 is a mapping such that π−1

2 (x∗) =
BGx , where x∗ ∈ G\X, and x ∈ x∗. Therefore, if F is the set of fixed points in
G\X, then we claim π−1

2 (F ) = F × BG ⊂ XG. For, over each point b ∈ BG, we
have the fiber X and if x ∈ XG 6= ∅, then there is a unique point xb in the fiber
over b corresponding to x. Since G acts on the fiber and fixes xb, then b 7→ xb
defines a cross-section of XG → BG. Then π∗1 : H∗(BG;L)→ H∗(XG;L) is a direct
summand for any PID L. If we view x as in G\X, then π−1

2 (x) = BG and so
π−1

2 (F ) = F ×BG ⊂ XG.

1.13.2. To construct EG, when G is a Lie group, one can construct the n-fold join
of G, G(n), with G acting diagonally. This is an approximation of EG in the sense
that G(n) is an (n− 1) connected simplicial complex if G is connected. EG is just
the infinite join of G with itself and under a suitable topology, it is contractible. It
is often a technical convenience to replace EG by G(n) ⊂ EG, for n very large. This
will be satisfactory for classifying purposes of bundles over X, if the dimension of
X is finite.

The convenience arises in that we can use C̆ech cohomology with various sup-
ports without worrying if things such as the universal coefficient formulas remain
valid in its most abstract setting. We will not mention this minor technicality
any further and we refer to the reader A. Borel et al “Seminar on Transformation
Groups” [?] for the various ways one gets around these technicalities. Since our in-
terest is mainly in finite dimensional geometric situations, any problem can always
be avoided by dealing with G(n), n large, instead of EG.

1.13.3. If G = T k, then BG = CP∞× · · ·CP∞, k copies. This is a K(Zk, 2). When
k = 1, EG = S∞, the infinite join of circles and (T 1)(n) = S2n−1. Explain more

[X,BTk ] = [X,K(Zk, 2)] ∼= H2(X,Zk).

If G = Zn1 × · · · × Znk , where each Zni is a finite cyclic group of order ni,
then BG = Zn1 × · · · ×Znk\S∞1 × · · · × S∞k , where each Zni acts freely as covering
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action!injective torustransformations on S∞i and as a subgroup of T 1. Then, [X,BG] = [X,K(G, 1)] ∼=
H1(X;G). Note, there is a principal T k fibering over BTk with total space BG.
(BG)(n) is a product of (2n− 1)-dimensional lens spaces with the ith factor being
Zni\S2n−1.

So all the principal T k (respectively, Zn1 × · · · × Znk)-bundles over X, up to
bundle equivalence, are in one-one correspondence with the elements of H2(X;Zk)
(repectively, H1(X;Zn1 × · · · × Znk)).

1.14. Injective Torus Actions

1.14.1 Definition. A torus action (T k, X) is said to be injective if evx# :
π1(T k, e)→ π1(X,x) is injective.

Suppose T k acts injectively on a path connected, locally path connected, semi
1-connected paracompact Hausdorff space X. Then, by Theorem 1.11.1, the T k

action lifts to an action on the covering space XZk , where Zk is the image of
π1(T k)→ π1(M). We show that the lifted action (T k, XZk) is free and splits.

1.14.2 Theorem ([?, §3.1]). If T k acts injectively on X, then XZk (the covering
space of X with π1(XZk) = Z

k) splits into T k×W so that (T k, XZk) = (T k, T k×W ),
where the T k action on T k ×W is via translation on the first factor and trivial on
the simply connected W factor.

Proof. Let G = T k and S1 be a circle subgroup of G. (Note that S1 is a direct
factor). Lift the S1 action to X ′ = XZk . Let y′ ∈ X ′ and suppose S1

y′ 6= 1 is the
stabilizer of the lifted S1 action at y′. Choose paths γ in X ′ from the base point
x′ over x to y′ and α : (I, 0, 1)→ (S1, 1, z) where z is the “first” element 6= 1 of S1

for which z · y′ = y′. Then α(t)y′ defines a loop at y′; and γ ∗α ∗γ is the associated
loop based at x′. Now (γ ∗ α ∗ γ)n ' γ ∗ αn ∗ γ represents a generator of Zk = H.
Hence n is the order of z in S1. This implies that γ ∗α∗γ represents an nth root of
a generator of Zk which is impossible unless n = 1. Thus S1

y′ = {1}, for all y′ ∈ X ′

and all circle subgroups S1 of T k. Hence the lifted toral action (T k, X ′) must be
a free action. Since T k is compact, the action (T k, X ′) is proper and therefore
X →W = T k\X ′ is a principal T k bundle.

We shall now show that this bundle is trivial. Since evx
′

∗ : π1(T k, 1) →
π1(X ′, x′) is an isomorphism, π1(W ) = 1. Let Rk act on X ′ through the cov-
ering projection Rk → T k. Then the action of Rk lifts to the universal covering
X̃ of X ′. In fact, as X ′ is a principal T k-bundle, the lift (Rk, X̃) is a principal
R
k-bundle over W . This is seen by observing that π1(T k, x′) → π1(X ′, x′) is an

isomorphism (and is independent of x′). Thus each T k orbit in X ′ lifts to an
R
k orbit in X̃. Since Rk is contractible, the Rk action on X ′ splits into a product
R
k×W with the Rk action just translation on the first factor. The bundle X ′ →W

is recaptured by dividing out by the covering transformations Zk ⊂ Rk on each Rk

orbit. Therefore, (T k, X ′) = (T k, T k ×W ), where T k just acts as left translations
on the first factor. �

We remark that the group T k × Q is acting properly on T k ×W , and W is
simply connected. The T k action does not lift to the universal covering X̃ of X
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but the induced ineffective Rk action on T k × W lifts to an effective Rk action
on Rk ×W and commutes with the group π1(X,x) of covering transformations on
R
k ×W .

For a different and more general proof of the above theorem, see Chapter ??.

1.15. Compact Lie group Actions

In this section we will investigate actions of compact connected Lie groups G
on closed aspherical manifolds M . It will follow that if G acts effectively, then G
must be a torus and the torus must act injectively. Therefore, the isometry group
of such a Riemannian manifold M will have its connected component of the identity
equal to the k-torus where k ≤ rank of center of π1(M).

There is also lots of control for G/G0, G0 being the connected component of
the identity of a compact Lie group G. For example if Z(π1(M)) = 1, then G0 = 1
and G/G0 injects into Out(π1(M)). If M is closed Riemannian and κ < 0 (κ =
sectional curvature), then M is aspherical and center of π1(M) is trivial. Hence, if
a finite group H acts effectively, then H injects into Out(π1(M)). Furthermore, if
κ is constant then Out(π1(M)) is finite and every subgroup H ⊂ Out(π1(M)) can
be realized as a group of isometries of M .

Consequently, if we can show that Z(π1(M)) = 1, and Out(π1(M)) has no
torsion, then the closed aspherical manifold admits no action of (not necessarily
connected) compact Lie groups whatsoever (totally rigid). Such manifolds exist
even in dimension 3, and there they even fiber over the circle.

♣
In fact, in everySee CRW, Tollefson,

Schultz, Puppe ?? cobordism class, there exists a closed manifold without any finite group actions if
dimension is ≥ 3.

1.15.1 Lemma. Let γ : G×X → X be an action of a path connected group G on a
path connected space X. Suppose the G action lifts to a covering space p : X̂ → X.
Suppose F = XG, the set of points of X fixed by G, is non-empty and F ′ is a path
component of F . Similarly, let E = X̂G. Then p−1(F ) = E. The path components
of E which project into F ′ (and hence onto) are exactly the path components of
p−1(F ′).

Proof. Let x ∈ F be a base point, and choose any x̂ ∈ X̂ such that p(x̂) = x as the
base point for X̂. We claim that g(x̂) = x̂ for all g ∈ G. First p(gx̂) = g(p(x̂)) = x.
But the orbit of x̂ is connected and gx̂ ∈ p−1(x), a discrete set. So gx̂ = x̂. Since
the choice of base point does not alter the lifted G-action (see section 1.11.2), we
see that p(E) ⊃ F . Since p(E) ⊂ F , we have that p(E) = F and p−1(F ) = E.

Let F ′ be a path component of F , and for x ∈ F ′, choose x̂ such that p(x̂) = x
as base points. We observe that E′ must project onto F ′. Let x̂ be fixed and let
E′ be the path component of E containing x̂. Then p(E′) ⊂ F ′. Moreover, if we
lift a path in F ′ starting at x and lift to a path in X̃ starting at x̂, then it lifts to
a path in E′. Hence p(E′) ⊃ F ′ and p−1(F ′) = E′. �

1.15.2 Example (cf. 1.11.5). Let S1 act on S2×S1 with a 2 fixed circles. Then the
lifted S1 action to S2×R1 has 2 components of fixed points each homeomorphic to
R

1 and which project to the 2 circles. However if we take an S1-action on S2×S1 #
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S2×S1 with 3 components of fixed points (3-circles), but on the universal covering
there is an infinite number of fixed components (each is line) projecting onto each
circle.

1.15.3 Lemma. (1) If S1 acts on a Q-acyclic paracompact finite dimensional
space X, then F = XS1 6= ∅ and is also Q-acyclic.

(2) If a finite p-group (p prime) G acts on a Zp-acyclic paracompact finite
dimensional space X, then F = XG 6= ∅ and is also Zp=acyclic.

Proof. Form the Borel space and the diagram from section 1.13:

X
π2←−−−− S∞ ×X π1−−−−→ S∞ = ES1yS1\

yS1\
y′S1\

S1\X π2←−−−− XS1 = S∞ ×S1 X
π1−−−−→ CP∞ = BS1

π1 is a fibering with X as fiber and structure group S1. Since X is Q-acyclic, π∗1
is an isomorphism on cohomology. Suppose F = ∅, then π−1

2 (x∗) = S1
x\S∞ = BS1

x
,

where p(x) = x∗, and S1
x is trivial or finite cyclic. But then BS1

x
is also acyclic and

so π∗2 is an isomorphism in rational cohomology by the Vietoris mapping theorem.
See Remark 1.15.6.

Since S1\X is finite dimensional, its Q-cohomology vanishes above the di-
mension of S1\X. This contradicts that π∗2 is an isomorphism, for H∗(X;Q) ∼=
H∗(CP∞;Q). Therefore F 6= ∅.

For x∗ ∈ S1\X − F , π−1
2 (x∗) is still Q-acyclic. This again implies that

π∗2 : Hq(S1\X,F ;Q)→ H∗(XS1 , FS1 ;Q) is an isomorphism in C̆ech rational coho-
mology. Recall FS1 ∼= F × CP∞. So we examine

δ−−−−→ Hq(XS1 , FS1 ;Q)
j∗−−−−→ Hq(XS1 ;Q) i∗−−−−→ Hq(F × CP∞;Q) δ−−−−→

Since Hq(S1\X,F ;Q) vanishes for q > dim(S1\X), Hq(XS1 , FS1 ;Q) = 0 and i∗ is
an isomorphism. We have seen π∗1 : Hq(XS1 ;Q)→ Hq(CP∞;Q) is an isomorphism
and so, by the Künneth rule, we have

Hq(FS1 ;Q) = Hq(F × CP∞;Q) = Σi+j=qHi(F ;Q)⊗Hj(CP∞;Q).

This implies that F must be Q-acyclic.
Essentially the same argument used for S1 now holds for Zp if S1, Q and BS1

are replaced by Zp, Zp and BZp . Note (Zp)x = 1 or Zp. For the general case of
a finite p-group, use the fact that G is solvable and contains a non-trivial normal
subgroup H ⊂ G. Consequently, XG = (XH)G/H . Now, reduce this case to G = Zp

by induction. �

1.15.4 Corollary. If X is a finite dimensional aspherical space, then π1(X,x) is
torsion free.

Proof. The universal covering X̃ of X is contractible and finite dimensional. If
the covering transformations of X̃ contained a cyclic group of prime order, then it
would contradict the Lemma. �



38 1. TRANSFORMATION GROUPS

1.15.5 Corollary ([?, Theorem 5.6], see also Theorem ?? ). If G 6= e is a compact
connected Lie group acting effectively on a closed aspherical manifold M , then G
is a toral group and acts injectively on M .

Proof. Let T k be a maximal torus in G. If the restriction of the evaluation ho-
momorphism evx∗ : π1(G, e) → π1(X,x) to the torus T k is not an injection, then
there exists a circle subgroup C in T k, for which the restriction of the evalua-
tion homomorphism is not injective. This contradicts the Lemma. Consequently,
the evaluation homomorphism evx∗ : π1(T k, e) → π1(M,x), which factors through
π1(G, e), is injective. But, evx∗ : π1(T k, e) → π1(G, e) (under the homomorphism
induced by inclusion) is injective if and only if G itself is T k. �

1.15.6 Remark. There is a subtlety in the argument above, namely, the validity of
the Künneth rule for C̆ech cohomology (with closed support). This is no problem if
F has the homotopy type of a CW-complex or if F is compact. Even if F is neither,
the rule is still valid because CP∞ (resp. BZp) is a nice space, see [?, Chapter XVI,
§5].

The Vietoris mapping theorem states that under a closed mapping for which
inverse images of points are acyclic in C̆ech cohomology, then the mapping induces
an isomorphism in cohomology. Here we replace BS1

x
= S1

x\CP∞ by S1
x\CPn, where

n is very large. Then S1
x\CPn is compact and Q-acyclic up to dimension n − 1.

These technical concerns all vanish if we assume that (S1, X) is a smooth action.
In fact, then F is a smooth Q-acyclic submanifold. A different proof of the lemma,
using Smith theory, can be found in [?, III,§10]. The lemma is also valid with
cohomology with integral coefficients and with the provision that (S1, X) has only
a finite number of non-isomorphic stability groups.

1.15.7 Lemma. If (S1,M) is a non-trivial action where M is a closed connected
aspherical manifold, then the action must be injective.

Proof. Assume that the kernel of evx# is not trivial. Then there exists a finite
covering group ′S

1 → S1 which acts non-trivially on M , and for which image of
evx# is trivial. Then this action of ′S1 lifts to the universal cover M̃ of M . Since M̃
is contractible, it is Q-acyclic. The group of covering transformations acts on M̃ .

By Lemma 1.15.3 , E = M̃
′S1

must be Q-acyclic and by Lemma 1.15.1,
ν−1(F ) = E, and π1(M)\E = F = X

′S1
. Since E is Q-acyclic, then

H∗(π1(M)\E;Q) = H∗(F ;Q) is the same as the group cohomology H∗(π1(M);Q),
which is the same as H∗(F ;Q) because M is aspherical.

If M is orientable, we have Hn(M ;Q) = Q. But F 6= M , since the action
(S1,M) was assumed non-trivial, and Hn(F ;Q) = 0 because F is a proper closed
subset of M . This is a contradiction so the S1-action is injective.

If M is not orientable, we can lift the S1-action to the orientable double cover
M̂ , because the elements of π1(M) which preserve the orientation of M̂ are left
invariant by S1. Thus the S1-action lifts to orientable double cover M̂ of M . Then
the S1-action on M̂ is injective, and consequently it is injective on M . �
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1.15.8 Proposition ([?, Corollary 6.2], see also Corollary ??). Let G be a finite
group acting effectively on a closed connected aspherical n-manifold M with fixed
point at x ∈ M . Then the representation θ : G → Aut(π1(M,x)) induced by the
action of G on π1(M,x) is injective.

Proof. Suppose K is the kernel of θ. If K 6= 1, let Zp be a cyclic subgroup
of K of prime order p. Then the action of Zp lifts to the universal cover-
ing M̃ of M . Then M̃Zp 6= ∅ and is Zp-acyclic by Lemma 1.15.3. Further-
more, Zp commutes with the covering transformations π1(M,x) on M̃ , by The-
orem 1.9.1. By Corollary 1.9.5??? , π1(M) acts freely as covering transforma-

tions on M̃Zp and covers C, the path component of MZp containing x. Therefore,
H∗(π1(M,x);Zp) ∼= H∗(M ;Zp) ∼= H∗(C;Zp). If M is orientable, this means that
Hn(M ;Zp) ∼= Hn(C;Zp) ∼= Zp. But C is a closed subset of M and this can only
happen if C = M , which contradicts the effectiveness of G. Therefore K must be
trivial and θ is faithful.

If M is not orientable, the action of Zp lifts with fixed point to the orientable
double covering M ′ of M . The action of Zp on π1(M ′, x′) is trivial and implies that
the action of Zp on M ′ is trivial by the argument for the orientable case. Thus, the
action of Zp on M would have to be trivial which again contradicts the effectiveness
of the G-action. �

1.15.9 Lemma ([?]). If (T k,M) is an effective action of a torus on a closed aspher-
ical manifold and if H ⊂ π1(M,x) is a central subgroup which contains Im(evx∗),
then H/Im(evx∗) contains no elements of finite order.

Proof. Let MH be the covering space associated to the subgroup H (i.e., with
π1(MH) = H). By Theorem 1.11.1, the T k action lifts to MH . We will show first
that (T k,MH) is free. Let b ∈ MH and suppose Tb be the stabilizer of the action
(T k,MH). Let p : (MH , b)→ (M,p(b)) be the covering projection. If Tb 6= 1, then
there exists a finite cyclic subgroup F ⊂ Tb ⊂ Tp(b). Let

g : (I, 0, 1) −→ (T k, e, f),

where f is a generator of F . The path p(g(t) · b) is the projection of a loop based at
b ∈MH to a loop based at p(b) in M . The homotopy class of p(g(t)·b) is an element
of H which is in the center of π1(M), because H is central and p∗ : H → π1(M,x)
is injective to center. Let

α : (I, 0, 1) −→ (M,p(b), p(b))

be a loop in M based at p(b). By Lemma 1.12.1,

[f · α(s)] = [p(g(t) · b) ∗ α(s) ∗ p(g(t) · b)].

But as p(g(t) · b) is in the center of π1(M,p(b)), we have f∗(α) = α. In other words,
F −→ Aut(π1(M,p(b))) is trivial. This contradicts that F −→ Aut(π1(M,p(b)))
must be injective since F fixes p(b), see Corollary ?? (ii). So Tb = 1 for each
b ∈MH .

Put N = π1(MH)/Im(evb∗) = H/Im(evp(b)∗ ). We can lift the free torus action
(T k,MH) to the splitting (T k, T k × W )-action; see Theorem 1.14.2. Here W is
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maximal torus action contractible because M is aspherical. (Actually, W is a contractible manifold or a
contractible cohomology manifold). Now Tb/Ty ∼= Nw, by Corollary 1.12.7, where
y 7→ b and y 7→ w under the projections T k × W → MH and T k × W → W .
Since Tb = 1 for each b ∈ MH , Nw = 1 for each w ∈ W . But, W is finite
dimensional and contractible, so each prime order cyclic subgroup of N must fix
some non-empty subset of W , by Lemma 1.15.3. Therefore, N is torsion free. Since
Im(evp(b)∗ ) ⊂ H ⊂ π1(M,x), with H central and Im(evb∗) = Im(evp(b)∗ ), H/Im(evb∗)
contains no element of finite order. �

1.15.10 Corollary ([?, Lemma 2]). If (T k,M) is an effective action of a torus
on a closed aspherical manifold and if H ⊂ π1(M,x) is a finitely generated central
subgroup for which Im(evx∗) ⊂ H, then Im(evx∗) is a direct summand of H.

1.15.11 Corollary. Let (T k,M) be a free action on a closed aspherical manifold.
Then π1(M,x)/evx∗(π1(T k, 1)) is torsion free.

Proof. Let H = Imevx∗(π1(T k, 1)), Q = π1(M,x)/evx∗(π1(T k, 1)). Then the
(T k,M) action lifts to (T k,MH) = (T k, T k × W ) by Theorem 1.14.2, and com-
mutes with the covering Q action. This induces a proper and effective action of Q
on W . Since W is contractible, any p-subgroup of Q must fix a non-trivial subset
of W (Lemma 1.15.3). Then by Corollary 1.12.7, T k could not be free. �

1.15.12 Definition. Any compact, connected Lie group which acts effectively on
a closed aspherical manifold is a torus T k with k ≤ rank of Z(π1(M)), the center
of π1(M). When k = rank Z(π1(M)), the torus action is called a maximal torus
action.

1.15.13 Corollary. Let M be a closed aspherical maniflod for which the center of
its fundamental group is finitely generated. If (T k,M) is a maximal torus action,
then Im(evx∗) = Center π1(M,x). Conversely, if Im(evx∗) = Center π1(M,x), then
(T k,M) is a maximal torus action on M .

In Chapter ??,
♣

we shall examine in detail maximal torus actions on manyappl-chapter
types of aspherical manifolds.

1.15.14 Remark. There are two unsolved problems here.
(1) Let M be a closed aspherical manifold and Z = Center π1(M). Is Z

finitely generated? No examples of closed aspherical manifold with non-
finitely generated Z are known ot us.

(2) Let M be a closed aspherical manifold. Suppose Z = Center π1(M) 6= 1.
Does M admit a non-trivial action of S1? Does M admit a maximal
torus action? Again no examples of closed aspherical manifolds without
a maximal torus action are known to us.
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cohomology
m-manifold

cohomologically
locally connected

local cohomology
group

orientable
non-orientable

1.16. Cohomology manifolds and the Smith theorems

Lemma 1.15.3 us an example of one of the important Smith theorems. The
technique of proof employed there can be expanded to prove much stronger results
of Smith. These Smith theorems play a very important role in transformation
groups. We shall now record some of them. For a full account, one can consult the
original papers of P. A. Smith or more recent proof and/or expositions found in [?]
or [?].

1.16.1. Let (G,M) be a non-trivial action on a connected m-manifold M , where
G = T k or a finite p-group, p a prime. Then

(1) F = MG is a cohomology manifold over Z for G = T k, (respectively, over
Zp, for G a p-group) of dimension ≤ m − 2 (respectively, ≤ m − 1). F ,
itself, could be empty, in which case, we say dimF = −1.

(2) dimF ≡ m(mod 2) if G = T k, or p-group, p 6= 2.
(3) If the action is effective, then dimF ≤ m − 2k for G = T k or G = Zpk

with k 6= 1, if p = 2. If p = 2, dim(F ) ≤ n− 1.
(4) χ(F ) = χ(M) if G = T k (respectively, χ(F ) ≡ χ(M) mod p if G = Zp)

when χ(M) is defined.
(5) If M is oriented and G, a 2-group, preserves orientation, then dimF ≡

m(mod 2).
(6) If the action is smooth, then F is a smooth submanifold of M .
(7) If M is Z-acyclic (respectively, Zp-acyclic), then MTk (respectively, MG,

G a p-group) is Z-acyclic (respectively, Zp-acyclic).
(8) If M has the Z-homology (respectively, the Zp-homology) of the m-sphere,

then MTk (respectively, MG, G a p-group) has the Z-homology (respec-
tively, the Zp-homology) of an (m− r)-sphere, r ≥ 0.

1.16.2. A definition of a cohomology m-manifold X over a PID L can be given as:
(1) X is a locally compact space with a countable neighborhood basis.
(2) Hm+1(X,A;L) = 0 for all closed subsets A of X, (i.e, dimL(X) ≤ m).
(3) If U is a neighborhood of x, then there exists a neighborhood V of x,

contained in U and H∗(U ;L) → H∗(V ;L) is trivial, (i.e., clc = cohomo-
logically locally connected).

(4) Hp(X,X − x;L) = L if p = m, and 0 otherwise, and for all x ∈ X.
[Hp(X,X − x;L) is called the local cohomology group in dimension p at
x].

Each U , open, connected, and with compact closure satisfies Hm(X,X −
U ;L) = L or L/2L. If it is always L, then X is called orientable over L. If
not, then X is non-orientable. In particular, if X is compact and connected, then
Hm(X;L) ∼= L if orientable and Hm(X;L) ∼= L/2L if not. Furthermore, if V ⊂ U ,
then the homomorphism induced by the inclusion Hm(X,X−V )→ Hm(X,X−U)
is an isomorphism, when U and V are as above. If A is closed in X and A 6= X, X
connected, then Hm(A;L) = 0.

Cohomology manifolds cannot be avoided if one wishes to study non-smooth
actions. For, the fixed point set of a p-group or toral group acting non-smoothly
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homologically locally
connected

locally smooth

may fail to be locally Euclidean. However, it will be a cohomology manifold over
the appropriate L. These cohomology manifolds behave homologically just as mani-
folds. They satisfy Poincaré duality, both globally and locally (i.e., relative duality).
They have a fundamental class when orientable and a twisted fundamental class
when not orientable. While these cohomology manifolds will appear in creating
topological actions, all that we will actually use are the facts of subsection ??.
More details about cohomology manifolds can be found in [?] and [?].

Cohomology manifolds are not necessarily ANR’s and so the convenient coho-
mology theory to use is the C̆ech or equivalently the Alexander-Spanier theory. This
agrees with the singular theory if X is hlc (homologically locally connected) over L;
that is, if every neighborhood U of x ∈ X has a neighborhood V , x ∈⊂ U , so that
i∗ : H∗(V ;L)→ H∗(U ;L) is trivial with respect to singular homology (for example,
if X is locally contractible). The appropriate homology to use is the Borel-Moore
homology (or, equivalently, the C̆ech homology whenever L is a field). Again we
can substitute the singular homology if the hlc over L condition holds.

For a finite dimensional simplicial complex, this reduces to the condition

Hp(St(v), ∂St(v);L) ∼= Hp(Dm, Sm−1;L) (∼= Hp(X;X − v;L))

for each vertex v, and St(v) is the star of v.

1.16.3. Examples of simplicial cohomology manifolds that arise as fixed points in
non-smooth actions on smooth manifolds are: (a) Suspensions of smooth manifolds
having the integral homology type of Sn−1 but are not Sn−1; (b) Suspension of
RPn when L = Zp or Q, p 6= 2 and n odd.

For non-simplicial examples, one can take a badly (i.e., wild) embedded arc A
in a smooth manifold M and collapse A to a point. Then M/A is a cohomology
manifold of the same homotopy type as M , but is not locally Euclidean at the point
{A/A}.

1.16.4. Another way to avoid the use of cohomology manifolds is to use the concept
of “locally smooth actions” which was introduced by Bredon in [?]. Let (G,M)
be a G-space. The action is called locally smooth if for each x ∈ M , there is
a Gx-slice S at x such that the Gx-space S is equivalent to an orthogonal Gx-
space. Consequently, the G-invariant tube G ×Gx S is a “linear” tube. Note S
is homeomorphic to Rn and the action of Gx on S is topologically equivalent to
an orthogonal action of Gx on Rn. Thus, M is a topological manifold. It is not
necessarily a smooth manifold, but each Gx-invariant tube is a smooth G-space.
Moreover, if H ⊂ G is a closed subgroup, then M is locally smooth as an H-space.
A consequence of this is MH is a (topological) submanifold of M , for each closed
H ⊂ G. Of course, smooth actions are locally smooth. For further information, the
reader should consult [?].

1.17. Manifolds on which only tori can act

Should this be in the first chapter?? — To a later Chapter??
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Aspherical
aspherical
Hyper-aspherical
K-manifold
admissible space

The techniques of the preceding sections were developed in [?] and were then
used to show that the only connected compact Lie groups G that could act effec-
tively on a closed aspherical manifold were the tori, and they had to act injectively.
In this section, we extend the class of manifolds on which only tori can act (see
Theorem ??). The material is taken from [?].

1.17.1. A connected, closed, oriented m-manifold M with Π = π1(M) is called:
(1) Aspherical if πi(M) = 0, for all i > 1; M is therefore a K(Π, 1).
(2) Hyper-aspherical [?] if there exists a closed aspherical m-manifold N

and a map f : M → N of degree 1. This is equivalent to saying
f∗ : Hm(N ;Z)→ Hm(M ;Z) is onto.

(3) K-manifold [?] if there exists a torsion-free group Γ and a map f : M →
K(Γ, 1) so that f∗ : Hm(K(Γ, 1),Z)→ Hm(M,Z) is onto.

(4) Admissible [?] if the only periodic self-homeomorphisms of M̃ commuting
with the deck transformation group π1(M) are elements of the center of
π1(M). Is this true in the non-orientable case?

1.17.2 Lemma. [?, Lemma 2.5] Let G = Zq (q a prime) act non-trivially on a closed
connected oriented n-manifold M . Let p : M → Zq\M be the natural projection.
Then the map p∗ : Hn(Zq\M ;Z)→ Hn(M ;Z) is not surjective.

Proof. Let F be the fixed point set ofG. Then F is nowhere dense and the induced
orbit map p1 : M − F −→ G\M − F is a finite covering of topological manifolds.
In particular, both (M,F ) and (G\M,F ) are relative topological n-manifolds; i.e.,
their differences are connected n-manifolds. Smith theory used here . If G acts
orientation-preservingly, then dimF ≤ n − 2, as noted in [?, §1] and hence the
horizontal arrows in diagram below

Hn(G\M,F )
j∗0−−−−→ Hn(G\M)

p∗0

y p∗
y

Hn(M,F )
j∗−−−−→ Hn(M)

are isomorphisms. Therefore it suffices to show that p∗0 is not surjective. But it is
clear that M − F and G\M − F are connected topological manifolds and p1 has
degree q. A diagram chase then shows that Hn(G\M,F ) ∼= Z ∼= Hn(M,F ) and p∗0
corresponds to multiplication by q. Hence p∗ is not surjective.

If G does not preserve orientation, then G = Z/2. In this case the invariant
cohomology group Hn(M ;Q)Z/2 = 0 since Hn(M ;Q) = Hn(M ;Z) ⊗ Q. Consider
the following diagram.

Hn(M ;Z) α−−−−→ Hn(M ;Z)⊗Q =−−−−→ Hn(M ;Q)

p∗
x p∗⊗1

x x
Hn(G\M ;Z)

β−−−−→ Hn(G\M ;Z)⊗Q =−−−−→ Hn(G\M ;Q)

where the last map Hn(G\M ;Q)→ Hn(M ;Q) factors through

Hn(G\M ;Q)
p∗1−−−−→ Hn(M ;Q)Z/2 incl−−−−→ Hn(M ;Q)
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The map α is injective, and β is injective on the free part of Hn(G\M ;Z). Fur-
thermore p∗1 is an isomorphism by a standard transfer argument. (Compare [4 or
5].) Therefore Hn(G\M ;Q) = 0, so that Hn(G\M,Z) is a torsion group. In fact,
similar considerations also show that the latter is at most a 2-torsion group. In
any case, we have shown enough to guarantee that p∗ is zero if G does not preserve
orientation. �

1.17.3 Theorem. Aspherical =⇒ Hyper-aspherical =⇒ K-manifold =⇒ Admissi-
ble.

Proof. We only need to prove K-manifold =⇒ Admissible. Let Π = π1(X).
Suppose M is a K-manifold which is not admissible. Then there exists a homeo-
morphism h of M̃ so that

(i) h commutes with Π,
(ii) hk = id, for some k > 1,
(iii) h 6∈ Z(Π), the center of Π.

Let p be the smallest integer so that hp ∈ Z(Π), 1 < p ≤ k. Let k = d · p. We may
assume p is a prime by choosing a power of h if necessary. Then

Zk = {h, h2, . . . , hk} ⊂ C
TOP(M̃)

(Π),

the centralizer of Π in TOP(M̃),

Zd = {hp, h2p, . . . , hdp} = Zk ∩Π = Zk ∩ Z(Π) .

Such an h defines an action of Zp ∼= Zk/Zd on M . The lifting sequence (see section
1.8.1) of (Zp,M) is 1→ Π

i→E → Zp → 1 and Π ⊃ Z(Π) ⊃ Zd, E ⊃ CE(Π) ⊃ Zk
so that 1→ Zd → Zk → Zp → 1 is exact.

Assume Fix(Zp,M) = ∅. Then Π1(M/Zp) = E. The set of torsion elements
of CE(Π) forms a fully invariant subgroup of CE(Π) coinciding with tCE(Π), the
smallest normal subgroup containing all torsion elements, and

1→ t(Z(Π))→ t(CE(Π))→ Zp → 1

is exact [?, (1.2)]. Then Π/t(Z(Π)) ∼= E/t(CE(Π)). The kernel of the homo-
morphism f∗ : Π −→ Γ, induced from f : M → K(Γ, 1) contains the smallest
normal subgroup containing all the torsion of Π. Therefore Π → Γ factors through
Π/t(Z(Π)). Consequently, we may extend the homomorphism Π → Γ to E → Γ
via

Π −−−−→ Π/t(Z(Π)) = E/t(CE(Π)) −−−−→ Γx
E ∼= π1(M/Zp)

If Fix(Zp,M) 6= ∅, then E ∼= Π × Zp, where Zp is the stabilizer of E at a
preimage of a fixed point. Now π1(M/Zp) ∼= E/N , where N is the smallest normal
subgroup containing all the stabilizers [?]. Since Zp ⊂ N already, π1(M/Zp) is a
quotient of Π by a normal subgroup of Π generated by torsion elements. Thus the
homomorphism Π → Γ again factors through π1(M/Zp)→ Γ.
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In either case, we have

π1(M) π1(M/Zp)-

Γ
?

�
�
�
�	

This induces a homotopy commutative diagram

M M/Zp-q

K(Γ, 1)
?

f g
�
�
�
�	

where q is the orbit mapping. The map g can be constructed [?, p.428], because
M/Zp has the homotopy type of a CW-complex since Floyd has shown that M/Zp is
an ANR [?]. The induced diagram on cohomology f∗ = q∗◦g∗ in dimension m leads
to a contradiction, for it was assumed that f∗ was onto, but g∗ : Hm(M/Zp;Z) −→
Hm(M ;Z) is never onto, by Lemma ??. �

1.17.4 Corollary. If N is a closed aspherical manifold, then no non-trivial finite
subgroup of homeomorphisms of the universal covering Ñ of N can commute with
the covering transformations of N .

Proof. If N is orientable, then N is admissible. The center of π1(N) is torsion-
free, by Corollary 1.15.4, so the conclusion follows. If N is not orientable, then
its orientable double cover N̂ is admissible. Any finite subgroup acting on Ñ and
commuting with π1(N) will commute with the subgroup π1(N̂), which means the
group is trivial. �

All statement involving “admissible” should extend to “non-orientable manifolds
whose orientable double covering are admissible.

1.17.5 Theorem. Any effective torus action on an admissible closed connected
manifold is injective:

Proof. If S1 is a circle subgroup of T k, then it is a direct summand of T k. There-
fore it is easy to see that an action of T k is injective if and only if every circle
subgroup of T k acts injectively. Assume that there is a subgroup S1 which fails
to be injective. Then evx∗(π1(S1, 1)) = C ⊂ π1(X,x) is a finite cyclic subgroup.
Lift the S1-action to MC , the covering space of M with π1(MC) = C. This action
is still effective, for if H ⊂ S1 fixes all of MC , then it also must fix all of M . If
C = 1, then MC is the universal covering M̃ . Otherwise, there is a |C|-fold cover
′S

1 of S1, where |C| is the order of C. There is an effective action of ′S1 on M̃ ,
covering the action of ′S1 on M . The action of ′S1 commutes with π1(M) on M

and C ⊂ ′S
1 with ′S

1
/C ∼= S1. The group C ⊂ Π, so we take a prime p so that
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action!almost effective Zp ⊂ ′S
1 satisfies C ∩ Zp = 1. Therefore, Zp ×Π acts effectively on M̃ and Zp is

not in the center of Π. This contradicts admissibility. �

1.17.6 Definition. An action (G,X) is almost effective if the kernel of the action
of G on X is a finite subgroup of G.

1.17.7 Exercise. Theorem ?? still holds if the T k-action is assumed to be almost
effective.

1.17.8. Rewrite? More generally, the theorem holds for all manifolds Mn with ξ∗ :
Hn(K(π1(M), 1);Q)→ Hn(M ;Q) surjective, where ξ∗ is induced by the classifying
map ξ : M → K(π1(M), 1) is injective. See [?], [?], [?], [?], [?], [?] and [?] for such
generalizations. Also, the theorem holds for homologically Kähler manifold all of
whose isotropy subgroups are finite (e.g., holomorphic actions), [?, p.170], [?, p.186].

1.17.9 Theorem. Let G be a compact connected Lie group acting almost effectively
on an admissible manifold M . Then

(1) G is a torus acting injectively with dim(G) at most the rank of the center
of π1(M).

(2) all isotropy groups are finite.
(3) χ(M) = 0.

Proof. From the structure theory of compact connected Lie groups, there is a cov-
ering group G′ which maps homomorphically onto G with kernel a finite subgroup
of the center of G. Furthermore, G′ splits as a product into T k×G1×· · ·×Gn, where
each of the Gi are simple and simply connected. Thus G′, via this homomorphism,
acts almost effectively on M . Clearly the torus factor T k must act injectively by
Exercise ??. Let Gi be a simple factor. Then Gi contains a non-trivial maximal
torus Ti of dimension > 0. Thus ev∗# : π1(Ti) → π1(Gi) → π1(M) is the trivial
homomorphism contradicting admissibility. Therefore, Gi is trivial. Then (1) and
(2) follow immediately from properties of injective actions. If χ(M) 6= 0, then
χ(MTk) = χ(M) (subsection ??; proved by [?] or [?], see also subsection ?? (4))
which would mean that MTk 6= ∅, and so the T k-action could not be injective. [If
we wish to avoid the reference for the equality χ(MTk) = χ(M), we can take a
g ∈ S1 ⊂ T k. Then, by the Lefschetz fixed point formula, there is an x such that
g(x) = x and if the powers of g is dense in S1, then x ∈MS1

.] �

1.17.10 Exercise. Let c : (M,x)→ (N, y) be a finite regular covering of N by an
admissible manifold M . Let H be the image c∗(π1(M,x)) ⊂ π1(N, y), and suppose
there exists an action of a compact connected Lie group G on N whose image
evy#(π1(G, e)) ⊂ H. Then the conclusions of Theorem ?? still hold. Show also, if N
is non-orientable and M is the orientable double covering, then evy∗(π1(G, e)) ⊂ H.
Hint: The lifted action to the universal covering (and that is by the group Gker(ev∗))
preserves orientation, and translates into evy∗(π1(G, e)) ⊂ H.
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1.17.11 Exercise. [?, Corollary 5.7] Suppose M is an aspherical m-manifold per-
haps with boundary and not closed. Let k be the smallest integer such that
Hm−k(M ;Z) 6= 0. If G is a compact connected Lie group acting effectively on
M , and with fixed point, then rank of the maximal torus T s of G is ≤ k/2. (Hint:
dim(MT s) ≤ m− 2s, where s > 0.)

1.17.12 Corollary. If M is admissible and G is a compact Lie group which acts
effectively, then

(i) Z(π1(M)) = 1 implies G is finite and Ψ : G→ Out(π1(M)) is injective.
(ii) Fix(G,M) 6= ∅ implies G is finite and θ : G→ Aut(π1(M)) is injective.

Furthermore, if M is a non-orientable manifold whose orientable double cover M ′

is admissible, then statements (i) and (ii) also holds for M .

Here Ψ is the abstract kernel induced from the lifting sequence 1→ π1(M)→
E → G → 1 and θ is the representation into Aut(π1(M)) when a base point is
chosen to be fixed by G. The corollary extends well-known results of [?, ?, ?], [?]
and a unpublished result of A. Borel.

Proof. We first assume thatM is admissible. (i) IfG is compact, let G0 denote the
connected component of the identity. The maximal torus of G0 must act injectively
by theorems ??, ?? and the hypothesis. This maximal torus action must be trivial
since Z(π1(M)) is trivial. Hence G0 = 1, so G is finite. Let K = ker(Ψ). Then
if K 6= 1, there is a prime p such that Zp ⊂ K. Form the lifting sequence 1 →
π1(M) → E → Zp → 1. With the center π1(M) trivial, and Zp ⊂ K, the group
extension E must be a product (since π1(M)×Zp is an extension when Ψ(Zp) = 1
and collection of all such extensions are given by H2(Zp;Z(π1(M))) = 0). So there
is just one such extension. See Chapter 1.11.5 for such details. But M is admissible
and Π × Zp acts effectively. Therefore, we have a contradiction and so K = 1.

(ii) As above, the maximal torus of G0 must act injectively. But as Fix(G,M) 6=
∅, G0 = 1, and G is finite. The lifting sequence is given by π1(M,x)oθG, where
x ∈MG, and θ : G→ Aut(π1(M,x)) is the induced homomorphism. If g ∈ ker(θ),
we may take some power m so that g′ = gm has order p, a prime. Then we have
π1(M,x)× Zp acting effectively on M̃ contradicting admissibility of M . Therefore
θ is injective.

Orientability of M is built into the definition of admissible. So now assume M
is non-orientable with M ′ its orientable double covering admissible. Let G0 be the
connected component of the identity of G. For case (i), the image of the evaluation
homomorphism is trivial. Therefore, G0 lifts to M ′ and must be a torus acting
injectively on M ′. The action of G0 can be lifted to the universal covering M̃ of
M , but it cannot be lifted to the universal covering of M ′, unless G0 is trivial.
Since the universal coverings of M and M ′ are identical, G0 must be trivial. Now
as before, let K = ker(Ψ). Then, as above, Π ×Zp, Zp ⊂ K, acts effectively on M̃ ,
and Zp commutes with π1(M ′, x) ⊂ π1(M,x). Therefore, Zp must be in the center
of π1(M ′, x′) since M ′ is admissible. Consequently, Zp cannot act effectively on M
and we have a contradiction, implying that K is trivial.

For part (ii), once again G0 is trivial, since G0 lifts to M ′, with fixed points, and
M ′ is admissible. As before, π1(M,x) × Zp acts effectively on M̃ . Zp commutes
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with the action of π1(M ′, x′). Since M ′ is admissible, Zp will have to be in the
center of π1(M ′, x′). This will contradict that Zp acts effectively on M . �

Examples of non-orientable closed manifolds whose orientable double covers are
admissible, other than the obvious ones, are all the closed non-orientable aspherical
manifolds.

question If M is admissible and M → M∗ is a (finite) covering, is M∗ ad-
missible? If M is admissible and M ′ → M is a finite (regular) covering, is M ′

admissible?
Second question: problematic If M →M∗ is a finite regular covering and M∗

is admissible, is M admissible? Let us not assume M∗ is orientable, just assume
that every cyclic group action on the universal covering M̃∗ and commutes with
π1(M∗) must be in the center of the covering transformations. Then if C is some
cyclic group actiong on M̃ , the universal covering of M , and commuting with the
covering transformations of π1(M) on M̃ , then we must show it belongs to the center
of π1(M) (as covering transformations). So our problem is to somehow construct
or extend the induced action or part of it on M to one on M∗ at least. But it is
not likely that we are to find that ı1(M) in π1(M∗) is invariant in general. So I
think this direction is diffeicult (or tricky at least). It is an interesting question by
it would seem to take some thought to settle it one way or another.

newly added exer

1.17.13 Exercise. Let M → M∗ be a finite regular covering with M admissible.
Then each effective action of a cyclic group on the universal covering of M∗, M̃∗,
that commutes with the covering transformations of M̃∗ is a covering action. (That
is, M∗ is also admissible if M∗ is orientable, or satisfies the crucial condition of
admissibility if M∗ is not orientable. Is the orientable assumption of M really
necessary to obtain the crucial condition?)

Proof. leave out? Let C be a cyclic group acting effectively on M̃∗. If C
commutes with the covering transformations of M̃∗, π1(M∗)m then C commutes
with the subgroup π1(M) of covering transformations. Since M is admissible, C
belongs to the covering transformations of M̃ . Thus it also belongs tot he covering
transformations of M̃∗.

1.17.14 Exercise. Let X be a closed aspherical manifold and θ : N(π1(X,x)) →
Aut(π1(X,x)), where N(π1(X,x)) is the normalizer of π1(X,x) in TOP(X̃), be as
in section 1.8.1. Then θ is injective on any torsion subgroup. (The proof uses the
fact that π1(X,x) is torsion free).

1.17.15 Example. Let G be a compact Lie group acting effectively on the m-torus
so that Φ : G→ Out(π1(Tm)) = GL(m,Z) is trivial. Then G = T s×F , and it acts
freely on Tm, where F is finite abelian and isomorphic to a subgroup of Tm−s, for
some 0 ≤ s ≤ m. Furthermore, F acts as covering transformations and F\Tm is
again a topological torus while the T s action splits into a product action.

Proof. The connected component of the identity must be an s-torus for some
0 ≤ s ≤ m, and acts injectively. Suppose there is a y ∈ Tm so that T sy contains
an element h of order p. Let g(t) be a path in T s = G0 from 1 to h. Then
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h(t)y is a loop at y. For any loop `(t) based at y, the loop `(t) is homotopic to
g(t)(y) ∗ h(`(t)) ∗ g(t)(y). But as π1(Tm) is abelian, `(t) ' h(`(t)). That is, the
automorphism h∗ ∈ GL(m,Z) is trivial. Hence in the lifted sequence, the semi-
direct product ZmoZp is a direct product. But, this contradicts admissibility of
Tm. So T sy = 1 for each y ∈ Tm. That is, the action of T s is free on Tm.

Moreover, we claim it is a product action. Now put H = Im(evx∗(π1(T s)))
and Q = π1(Tm)/H ∼= Z

m/Zs. Q acts properly on T s\TmH = W , a contractible
(cohomology) manifold. Then, Q, which is abelian, must act freely since Qw = 1 for
every w ∈W by Qw ∼= T sy /T

s
ŷ = 1 from Theorem 1.11.1. But as W is contractible,

this means Q is torsion free, by Corollary 1.15.4 . So Im(evx∗(T
s)) ∼= Z

s is a direct
summand of Zm. This will force the action to split as we have seen earlier in
Theorem 1.14.2, so (T s, Tm) = (T s, T s × Y ) where Y is a (cohomology) manifold
of the homotopy type of Tm−s.

Now F acts on Y , and acts trivially on π1(Y ), a summand of Zm. In the lifting
sequence 1→ π1(Y )→ E → F → 1, the group E acts trivially on π1(Y ) because G
acts trivially on π1(Tm). Thus, E is a central extension of π1(Y ) ∼= Z

m−s and since
it maps trivially into GL(m − s,Z), it must be torsion free. Otherwise, E would
contain an effective action of π1(Y ) × Zp, for some prime p, on Ỹ , a contractible
(cohomology) manifold with compact quotient which is impossible. The Theorem
?? was proven for topological manifolds, but it is also true by the same argument for
ANR cohomology manifolds. Then Y is an ANR aspherical cohomology manifold
homotopy equivalent to (m− s)-torus.

[If the action is smooth (respectively, locally smooth), then Y is a smooth
manifold (respectively, topological manifold), with the homotopy type of Tm−s.
In particular, using standard surgery results, Y will be homeomorphic to Tm−s

provided m − s 6= 3. For some pathological topological actions, Y could fail to be
locally Euclidean.]

Therefore, E as we shall see later in ()
♣

is isomorphic to Zm−s, and F is abelian, ???
Moreover, as it must act properly and freely, E acts as covering transformations on
Ỹ . Actually we can now see the structure of G as T s × F where F is an abelian
group isomorphic to a subgroup of Tm−s. As G splits as a product, we let F act on
Tm. Then it acts as covering transformations since it does so on the factor Y . Of
course, F\Tm is again a topological torus. The T s action can be treated as acting
on Tm or F\Tm. �

This result for the torus has a generalization to infra-nilmanifolds and will be
treated in Chapter 10. Is this right??

old b-maxtorus.tex taked out [0.07]

1.17.16 Example. There are no shortage of closed aspherical manifolds. For exam-
ple, if Γ is discrete and acts properly and freely on Rn, then Γ\Rn is an aspherical
manifold (a K(Γ, 1)-manifold). If Γ acts so that the quotient is compact, then Γ\Rn
is a closed aspherical manifold. Typical examples arise by taking Γ a torsion free
cocompact discrete subgroup of a Lie group G with finitely many components and
K a maximal compact subgroup of G. Since K is a maximal compact subgroup,
G/K is diffeomorphic to Rn for some n, and Γ being torsion free implies Γ∩K = 1
so that Γ\Rn = Γ\(G/K) = (Γ\G)/K is a closed aspherical manifold.
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For example, each closed 2-manifold whose Euler characteristic is negative is of
the form Γ\PSL(2,R)oZ2/O(2) where Γ is the fundamental group of the surface and
is isomorphic to a torsion free cocompact subgroup of the full group of isometries
of the hyperbolic plane.

Hyper-aspherical manifolds (see section ??) which are not aspherical are most
easily obtained by taking any closed oriented aspherical n-manifolds N and forming
the orientable connected sum with any other closed oriented m-manifold P . Then
M = P#N maps onto N with a map of degree 1 by collapsing P − (Ball)0 ⊂M to
a point.

Each of the implications of Theorem ?? cannot be reversed. See [?] for a
complete discussion. For example, the connected sum of two non-homeomorphic
3-dimensional spherical space forms which are also not lens spaces is admissible but
is not a K-manifold.

1.17.17. There are many interesting examples of closed aspherical manifolds without
any compact Lie group action. The first examples were given by Conner–Raymond–
Weinberger, and E. Bloomberg in his thesis. The first 3-dimensional examples were
given by Raymond–Tollefson.Put in Refs

In every bordism class (dim ≥ 3), there exist such manifolds. This was proved
by R. Schultz. It is possible to construct 7-dimensional solv-manifolds for whichSchultz
Out(π1(M)) = 1.[?]. In general the examples are obtained by showing that center[CR]
of π1(M) is trivial and Out(π1(M)) is torsion free (in the aspherical case).

1.17.18 Exercise. Suppose that M is a hyper-aspherical m-manifold and π1(M)
has trivial center, and Out(π1(M)) is torsion free. Let N be a simply connected
closed m-manifold and form N#M . Show that N#M admits no effective finite
group action.

Puppe
♣

in []
♣

has shown that there exists a 6-dimensional simply connectedFirst name
??? closed manifold without any effective finite group action.

♣
This manifold would

Check if he did only
for Z2

therefore be admissible.

1.17.19 Example. [?, p.43, §7.2] CRW??? The usual technique for constructing
aspherical manifolds with few or no finite group actions is to construct a group
which is the fundamental group of a closed aspherical manifold and for which one
can prove that center is trivial and the torsion in the outer automorphism group
is trivial or at least finite and small. Here is a rather elementary example of a
non-orientable 3-manifold that admits no action of any finite group except for Z2.

Furthermore, smoothly there is only one such action. Take the matrix
[
0 1
1 1

]
.

This linear transformation on R2 preserves the integral lattice (that is, the matrix
normalizes the Z× Z group of standard translations[

x
y

]
7→
[
x+m
y + n

]
, (m,n) ∈ Z× Z),

and so induces a homomorphism h on the 2-torus T = Z
2\R2. Form M = T 2×ZR,

with Z acting diagonally. The generator of Z acts on T 2 as h and on R by sending
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r 7→ r − 1. M is then an affinely flat 3-manifold which fibers over S1 with fiber
T 2 and structure group Z. It is not too difficult to show that Z(π1(M)) = 1 and
Out(π1(M)) = Z2, h and all its powers fix just one point on T 2. There is a Z2

action on M which leaves each fiber T 2 invariant (because
[
−1 0
0 −1

]
centralizes

h). This action on M has exactly 2 circles of fixed points.





CHAPTER 2

Applications

rewrite this The Seifert Construction, which is a special embedding, θ : Π →
TOPG(G ×W ), of the group Π into TOPG(G ×W ) such that Π acts properly
on G ×W , preserves some of the properties of both G and W on θ(Π)\(G ×W ).
Furthermore, the action of Π on G×W “twists” the topology and geometry of G
and W to create the orbit space θ(Π)\(G ×W ) in the same way that the group
structures of Γ and Q “twist” to create the group Π. In other words, this algebraic
twisting of Π makes the geometric twisting of the “bundle with singularities”

Γ\G→ θ(Π)\(G×W )→ Q\W,

where the homogeneous space Γ\G is a principal fiber. In the several applications,
we have selected to include here this features seems especially prominent.

One of the important geometric problems that has motivated the develop-
ment of Seifert fiberings is the construction of closed aspherical manifolds realizing
Poincaré duality groups Π of the form 1 → Γ → Π → Q → 1. The Seifert Con-
struction enables one to find explicit aspherical manifolds M(Π) when Q acts on a
contractible manifold W and Γ is a torsion free lattice in a Lie group.

For a topological manifold, the homotopy classes of self-homotopy equivalences
can be regarded as algebraic data. We shall show how the Seifert Construction
can be used to lift these finite subgroups of homotopy classes to an action on the
manifold.

2.1. Existence of Closed Smooth K(Π, 1)-manifolds

There are two difficult problems related to the title. They are:
•Which groups can be the fundamental group of a closed aspherical manifold? and
• If Π is the fundamental group of an aspherical manifold, can we give an actual
explicit construction of an aspherical manifold for the group Π?

There are some general criteria for the first problem such as Π must be finitely
presented, have finite cohomological dimension and satisfy Poincaré duality in that
dimension. The Seifert Construction gives answers to both questions for large class
of groups Π. The idea is that if 1 → Γ → Π → Q → 1 is a torsion free extension
where Γ is the fundamental group of a closed aspherical manifold and Q is a proper
action on a contractible manifold W with compact quotient, then Π should be the
fundamental group of a closed aspherical manifold. We have the following

2.1.1 Theorem. Let Γ be a cocompact special lattice in G (see subsection ??) and
ρ : Q→ TOP(W ) be a proper action of a discrete group on a contractible manifold
W with compact quotient. If 1→ Γ→ Π → Q→ 1 is a torsion free extension of Γ
by Q, then for any Seifert Construction θ : Π → TOPG(G×W ),

53
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(1) M(θ(Π)) = θ(Π)\(G×W ) is a closed aspherical manifold if Γ is of type
(S3),

(2) M(θ(Π)) = θ(Π)\((G/K)×W ), where K is a maximal compact subgroup
of G, is a closed aspherical manifold if Γ is of type (S4).

Proof. We know from Theorem ?? that for each extension 1→ Γ→ Π → Q→ 1,
there exists a homomorphism θ of Π into TOPG(G×W ) (resp., TOP(G,K)(G/K×
W ) in the case of type (S4)), see ?? or ??. which one? We need only to check
that θ is injective. Suppose Q0 is the kernel of φ × ρ : Q → Out(G) × TOP(W ).
Then Q0 is finite since the Q action on W is proper. Let 1→ Γ→ ΠQ0 → Q0 → 1
be the pullback via Q0 ⊂ Q. By Corollary ??, θ is injective if and only if ΠQ0 is
torsion-free. But the group ΠQ0 is torsion free since Π is assumed to be torsion
free.

(S4)?
The restriction θ|E defines an action of E on G×W (resp., G/K×W ). Since Γ

is of finite index in E, no non-trivial element of E can fix G×W (resp., G/K×W ).
For if it did, then some power would be a non-trivial element of Γ which does not
fix G (resp., G/K). Therefore, θ is injective; θ(Π) acts properly and freely since it
is torsion free. �

2.1.2 Remark. (1) The proof shows that the theorem still holds under the
weaker assumptions that φ×ρ : Q→ Out(G)×TOP(W ) has finite kernel
(ρ : Q→ Out(G)×TOP(W ) may have infinite kernel) and that the image
ρ(Q) ⊂ TOP(W ) acts properly on W with compact quotient.

(2) If W is a smooth contractible manifold and ρ : Q → Diff(W ), then the
construction can be done smoothly and M(θ(Π)) is smooth.

(3) If ρ1 and ρ2 are rigidly related (i.e., there exists h ∈ TOP(W ) for which
ρ2 = µ(h)◦ρ1) and Γ is characteristic in Π, then M(θ1(Π)) and M(θ2(Π))
are homeomorphic via a Seifert automorphism. Moreover, if we fix ` and
ρ, then the constructed M(θ(Π)) are all strictly equivalent.

(4) When W = {p} is a point (a 0-dimensional contractible manifold), then
Q must be finite for Q to act properly, and every ρ : Q → TOP({p}) is
rigidly related. The closed aspherical manifolds constructed are infra-G-
manifolds. cf. Example ??.

(5) One important application of these constructions is that they provide
model aspherical manifolds with often strong geometric properties. If one
wants to study the famous conjecture that two closed aspherical manifolds
with isomorphic fundamental groups are homeomorphic via the methods
of controlled surgery, then the constructed aspherical Seifert manifolds are
excellent model manifolds.

The above procedure can be extended for even more general extensions. As an
example,

2.1.3 Theorem. Let Π be a torsion-free extension of a virtually poly-Z group Γ
by Q, where Q acts on a contractible manifold W properly with compact quotient.
Then there exists a closed K(Π, 1)-manifold.
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Proof. A torsion-free virtually poly-Z group Γ has a unique maximal normal
nilpotent subgroup ∆, which is called the discrete nilradical of Γ. See [?]. Then
the quotient Γ/∆ is virtually free abelian of finite rank. Furthermore, since ∆ is a
characteristic subgroup of Γ, it is normal in Π. Consider the commuting diagram
with exact rows and columns:

1 1y y
∆ =−→ ∆y y

1 −→ Γ −→ Π −→ Q −→ 1y y y =
1 −→ Γ/∆ −→ Π/∆ −→ Q −→ 1y y

1 1

Since Γ/∆ is virtually free abelian of finite rank (say of s), it contains a charac-
teristic subgroup Zs. Let Q′ = (Π/∆)/Zs. Then the natural projection Q′ −→ Q
has a finite kernel. Therefore, if we let Q′ act on W via Q, the action will still be
proper.

One can do a Seifert fiber space construction with the exact sequence

1 −→ Z
s −→ Π/∆ −→ Q′ −→ 1

which yields a proper action of Π/∆ on Rs ×W with compact quotient. Using
this action of Π/∆ on Rs×W , one does a Seifert fiber space construction with the
exact sequence

1 −→ ∆ −→ Π −→ Π/∆ −→ 1.

This gives rise to a proper action ofΠ onN×(Rs×W ), whereN is the unique simply
connected nilpotent Lie group containing ∆ as a lattice, with compact quotient.

If the space W is smooth, and the action of Q on W is smooth, both construc-
tions can be done smoothly so that the proper action of Π on N × (Rs ×W ) is
smooth.

In any case, since the group Π is torsion free, the resulting action of Π on
N × (Rs ×W ) is free. Consequently, we get a closed K(Π, 1)-manifold

M = Π\(N × Rs ×W ).

It has a Seifert fiber structure

F −→M −→ Q\W

where the principal fiber F itself has a Seifert fiber structure

∆\N −→ F −→ T s = Z
s\Rs.

In fact, since the action of the characteristic subgroup Zs on Rs is free, F is a
genuine fiber bundle, with fiber a nilmanifold ∆\N over the base torus T s. �

The space W does not have to be aspherical. As far as the action of discrete
Q is proper, the construction works. The resulting action of Π is free if and only
if the pre-image of Qw (the stabilizer of the Q action at w ∈ W ) in Π is torsion
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abstract kernel
lifting
geometrically

realizable
Nielsen’s realization

problem
admissible

free. In this case, the space Π\(G ×W ) will not be aspherical. See ??. Cf. also
Theorem ?? and ??.

2.2. Lifting Problem for Homotopy Classes of Self-Homotopy
Equivalences

Let M be a closed aspherical space and E(M) be the H-space of homo-
topy equivalences of M into itself. Any f ∈ E(M) induces an isomorphism
f∗ : π1(M,x) → π1 (M,f(x)). By choosing a path ω from x to f(x), we have
an automorphism fω∗ of π1(M,x), defined by fω∗ ([τ ]) = [ω−1 · (f ◦ τ) · ω]. A differ-
ent choice of ω alters fω∗ only by an inner automorphism. Therefore, we obtain a
homomorphism

γ : E(M)→ Out(Π),

where Π = π1(M,x). Suppose M is a K(Π, 1) space. Then E0(M) is the kernel
of γ so that γ factors through π0 (E(M)) = E(M)/E0(M), where E0(M) is the self
homotopy equivalences homotopic to the identity. Moreover, γ is onto since every
automorphism of Π can be realized by a self homotopy equivalence of M .

2.2.1 Definition. A homomorphism ϕ : F → Out(Π) ∼= π0 (E(M)) is called
an abstract kernel . An injective abstract kernel is the same as a subgroup of ho-
motopy classes of self-homotopy equivalences of M . A lifting of ϕ as a group of
homeomorphisms is a homomorphism ϕ̂ : F → TOP(M) which makes

F
=−→ Fyϕ̂ yϕ

TOP(M) −→ E(M) −→ π0 (E(M))

commutative. The abstract kernel F → Out(Π) is geometrically realizable if it can
be realized as an action of F on M (i.e., a lifting as a group of homeomorphisms
exists).

This problem became known as Nielsen’s realization problem. J. Nielsen [?]
had shown that every cyclic check this group of outer automorphisms on a closed
surface could be geometrically realized. Others had shown, by sometimes different
methods, that finite p-groups and solvable Lie groups could be geometrically real-
ized on compact surfaces Zieschang–Macbeath—check up . In 1977, the first ex-
amples showing the failure of geometric realization on closed aspherical n-manifolds
n ≥ 3, were constructed [?]. These examples were nilmanifolds. Many other ex-
amples soon followed, e.g., [?], [?], Zie-Zimm . In 198?, S. Kerkhoff ref showed
that all finite subgroups of Out(π1(M)), where M is a closed aspherical, can be
geometrically realized.
Put in the original example or our example

In Corollary ?? and Theorem ??, we have seen that the realization problem for
certain solvmanifolds was solved. We study the problem in a more detail.

2.2.2 Definition. An extension 1 → Π → F ∗ → F → 1, where the center Z(Π)
is torsion-free, is called admissible [?] if CF∗(Π), the centralizer of Π in F ∗, is
torsion-free.
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We have a necessary condition:

2.2.3 Lemma. Let M be closed aspherical manifold with π1(M) = Π; let M̃ be the
universal cover of M . Then the extension 1→ Π → N

TOP(M̃)
(Π)

η−→ TOP(M)→
1 is admissible where N

TOP(M̃)
(Π) denotes the normalizer of Π in TOP(M̃).

Proof. Suppose that there is z ∈ N
TOP(M̃)

(Π) with finite order, and ϕ(z) = 1,
where ϕ : N

TOP(M̃)
(Π) → Aut(Π). Let F be the finite cyclic subgroup generated

by z. Consider the induced

1 −−−−→ Π −−−−→ η−1(η(F ))
η−−−−→ η(F ) −−−−→ 1y y y

1 −−−−→ Inn(Π) −−−−→ Aut(Π) −−−−→ Out(Π) −−−−→ 1 .

Since F is finite and Π is torsion-free, η is an isomorphism on F so that we have
a semi-direct product structure on η−1(η(F )). Now since z ∈ kerϕ, conjugation
by z yields zxz−1 = x for all x ∈ Π. This implies η−1(η(F )) = Π × F . So the
action (η−1(η(F )), M̃) contains a finite subgroup action (F, M̃) which commutes
with (Π, M̃) so that ϕ(F ) = 1 in Aut(Π). Since M is an aspherical manifold,
Coro p.48, just before 1.15.4 implies that F is trivial. Thus we have z = 1. �

2.2.4 Corollary. Let (G,M) be an effective action of a finite group on a closed
aspherical manifold M with π1(M) = Π. Then the induced extension 1 → Π →
G∗ → G → 1, where G∗ denotes the group of all liftings of G to homeomorphisms
of M̃ , is admissible.

Notice that G∗ = η−1(G) and

1 −−−−→ Π −−−−→ G∗ −−−−→ G −−−−→ 1y y y
1 −−−−→ Π −−−−→ N

TOP(M̃)
)Π −−−−→ TOP(M) −−−−→ 1

is a pullback diagram so that G∗ ⊂ N
TOP(M̃)

)Π (see subsection ?? for pullback).
Since the bottom sequence is admissible, so is the top one.

2.2.5 Remark. Let (G,M) be an action (not necessarily effective) of a finite group
on a closed aspherical manifold M with π1(M) = Π. Then there exists an extension
(not necessarily admissible) 1 → Π → E → G → 1 realizing the abstract kernel

ϕ : G
ϕ̂−→ TOP(M)

ϕ′−→ Out(π1(M)).

Proof. Since (ϕ̂(G),M) is effective, there exists an admissible extension E′ of Π

by ϕ̂(G), 1 → Π → E′ → ϕ̂(G) → 1. We can “pull-back” G
ϕ̂−→−→ ϕ̂(G) along
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finitely extendable E′ → ϕ̂(G) to get

1 −−−−→ Π −−−−→ E −−−−→ G −−−−→ 1y=

y yϕ̂
2 −−−−→ Π −−−−→ E′ −−−−→ ϕ̂(G) −−−−→ 1

Certainly the top row is an extension of Π by G realizing (Π,G,ϕ = ϕ′ ◦ ϕ̂). �

Thus we have a necessary condition for the existence of a lifting of an abstract
kernel ϕ : F → Out(Π), as an (effective, resp.) group action: the existence of an
(admissible, resp.) group extension of Π by F realizing the abstract kernel. For
finite groups, this necessary condition is also sufficient for some tractable manifolds.

2.2.6(Unsolved Problem). Does there exist a closed aspherical manifold M such
that there is an extension 1 → π1(M) → E → F → 1 with F finite, but F cannot
be realized as a group action.

2.2.7 Definition. Let Q act properly on a space W and B be the quotient Q\W .
Suppose for each extension 1 → Q → E → F → 1 by a finite group F , the action
of Q extends to a proper action of E on W . Then we say that the Q action on W is
finitely extendable. In particular, then F acts on B preserving the orbit structure.

If Γ is normal in Π, recall Aut(Π,Γ) denotes the automorphisms of Π that
leave Γ invariant. Since Inn(Π) leaves Γ invariant, we can put Aut(Π,Γ)/Inn(Π) =
Out(Π,Γ). It is a subgroup of Out(Π).

We are interested in realizing a finite abstract kernel F → Out(Π) as a group
action on a model Seifert fiber spaceM(Π) with a principal fiber Γ\G. In particular,
we want the F action to be fiber-preserving maps; in fact, Seifert automorphisms.
This means that, on the group level, the extension must leave the lattice Γ invari-
ant. In other words, we consider only those abstract kernels which have images in
Out(Π,Γ).

2.2.8 Theorem. Let M(θ(Π)) = θ(Π)\(G×W ) be a Seifert manifold with principal
fiber Γ\G, where G is simply connected completely solvable Lie group. Suppose
(Q,W ) is finitely extendable, where Q = Π/Γ. Then each abstract kernel ψ :
F → Out(Π,Γ) of a finite group F can be geometrically realized as a group of
Seifert automorphisms on M(θ(Π)) if and only if the abstract kernel ψ admits
some extension. assuming θ is injective?

2.2.9 Remark. This theorem proves that if (Q,W ) is finitely extendable, then
(θ(Π), G×W ) becomes finitely extendable itself. Thus, we can enlarge the class of
extendable pairs more and more. Here is a list of finitely extendable pairs:

(1) hyperbolic space and a cocompact lattice
(2) Rn and a crystallographic group
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(3) connected, simply connected nilpotent Lie group and its almost crystallo-
graphic group

(4) connected, simply connected completely solvable Lie group and its almost
crystallographic group

Proof. Let 1 → Π → E → F → 1 be an extension realizing the abstract kernel
ψ. Since ψ(F ) ⊂ Out(Π,Γ), Γ is normal in E. We have the commutative diagram
with exact columns and rows:

1 1y y
1 −→ Γ −→ Π −→ Q −→ 1y y y
1 −→ Γ −→ E −→ E/Γ −→ 1y y

F
=−→ Fy y

1 1

Consider the induced extension

1 −→ Q −→ E/Γ −→ F −→ 1.

Since ρ is finitely extendable, there exists ρ′ : E/Γ → TOP(W ) extending ρ :
Q → TOP(W ). Again by the existence theorem for special lattices, Theorem
??, there exists θ′ : E → TOPG(G × W ), where θ′|Γ = θ|Γ = i : Γ ↪→ G, and
ρ′|Q = ρ. Put θ′|Π = θ′. Of course, θ′ may be different from θ, but as θ and θ′

agree on Γ and Q, we can apply Theorem ?? (2) to conjugate TOPG(G×W ) by an
element of M(W,G)oInn(G) which carries θ′|Π to θ so that the new homomorphism
θ′ : E → TOPG(G×W ) is an extension of θ : Π → TOPG(G×W ). This yields an
action of F on θ(Π)\(G×W ) as a group of Seifert automorphisms as desired. �

2.2.10 Corollary. Let M = Π\G be an infra G-manifold, where G is simply
connected completely solvable Lie group and Π ⊂ GoAut(G). Then each abstract
kernel ψ : F → Out(Π,Γ) of a finite group F can be geometrically realized as an
(effective, resp) group of affine diffeomorphisms on M if and only if the abstract
kernel ψ admits an (admissible, resp) extension.

2.2.11 Exercise. Let Π = Z
2 and M = Π\R2 = T 2. Realize the abstract kernel

ϕ : Z2 → GL(2,Z). How many distinct actions (Z2, T
2) (up to equivalence) do you

get?

Proof. The infra-G-manifold M(Π) is modelled on G×{p} (p=point), (G/K×{p}
for a convenient form of G in the semi-simple case), and TOPG(G×{p}) = Aff(G)
(resp. Aff(G,K)), see [?] for this notation. Trivially, every Q→ TOP({p}) extends
to E/Γ→ TOP({p}). The above theorem then immediately applies, and F acts on
M(Π) by Seifert automorphisms which are affine diffeomorphisms.
This proof talks about semi-simple, but no such thing in the statement!

�
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2.2.12 Remark. 1. Since we may introduce a metric structure in the Corollary
from a left invariant metric on G,M(Π) has the structure of a flat, almost flat,
Riemannian infra-solvmanifold or a locally symmetric spaces. We may also fur-
ther conjugate θ(Π) in Aff(G) so that F now acts on the conjugated manifold by
isometries preserving the flat, etc, structures.

2. The proper action of Π in the Theorem is not necessarily free nor effective.
Thus M(Π) could very well be a Seifert orbifold. The Corollary then works for
such orbifolds, i.e., infra-G-spaces. In the Euclidean case, M(Π) would then be a
Euclidean “crystal” and Π a Euclidean crystallographic group. In theorem ??, F
sends fibers (which could be G-crystals instead of infra-G-spaces) to fibers.

For more about the realizations up to strict equivalences, and finding examples
where F does not lift because there are no extensions realizing the abstract kernels,
the reader is referred to [?], [?], [?], [?], [?], [?], [?], [?], [?], [?] and [?].

For a torsion free poly{cyclic or finite} group Π, we can always find a (charac-
teristic) predivisible subgroup Γ of finite index in Π. Let Q be the finite quotient
Π/Γ, and choose W =point. Then the Seifert Construction of Theorem ?? produces
an embedding θ(Π) ⊂ Aff(G,K) and the Seifert manifold M(Π) = θ(Π)\G/K is
a closed smooth K(Π, 1) manifold.

2.2.13 Corollary. [Geometric realization of group actions from homotopy data]
Under the conditions of Theorem ??, let M(Π) = θ(Π)\G/K be a Seifert manifold.
Suppose now ψ : F → Out(Π) = π0E(M(Π)) is a homomorphism of a finite group
F into the homotopy classes of self-homotopy equivalences of M(Π). Then, F acts
on M(Π) if and only if there exists an extension,

1→ Π → E → F → 1,

realizing the abstract kernel ψ. Moreover, the action can be chosen to be smooth,
induced from smooth Seifert automorphisms contained in Aff(G,K). The action of
F is effective if and only if CE(Π) is torsion free .

Proof. In order to have an action, we must have a lifting sequence and hence an
extension, 1 → Π → E → F → 1, that realizes the abstract kernel ψ. Since Γ is
characteristic in Π, it is normal in E and and 1 → Q = Π/Γ → E/Γ → F → 1 is
exact. Because of the commutative diagram

1 −−−−→ Γ −−−−→ Π −−−−→ Q −−−−→ 1

=

y y y
1 −−−−→ Γ −−−−→ E −−−−→ E/Γ −−−−→ 1y y

F
=−−−−→ F

we can find a Seifert construction θ′ : E → Aff(G,K) which extends θ : Π →
Aff(G,K). Therefore the group F acts on M(Π) smoothly as diffeomorphisms
preserving the Seifert structure. The action of F , as mentioned in the previous
corollary, is effective, if and only if, CE(Π) is torsion free. In any case, we have a
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lift ψ̃,

F
ψ̃−−−−→ Diff(M(Π))

ψ

y j

y
Out(Π) =−−−−→ E(M(Π))

where j sends a self diffeomorphism to its homotopy class. In case there exists one
extension realizing the abstract kernel ψ, then for each element of H2(F,Z(Π))
there is a congruence class of extensions E, realizing the abstract kernel ψ. Each of
these extensions gives rise to a (not necessarily effective) action of F on M(Π). �

If we combine this corollary with surgery results, we can get much stronger
statements.

2.2.14 Theorem. Let 1 → Π → E → F → 1 be an extension of a torsion-free
poly{cyclic or finite} group Π by a finite group F with abstract kernel ψ : F →
Out(Π). Let M be a closed aspherical n-manifold, n 6= 3, with π1(M) = Π.
Then there exists an action of F on M which realizes the abstract kernel ψ : F →
Out(Π) = π0(E(M)), the group of homotopy classes of self-homotopy equivalences
of M . The action is effective if and only if CE(Π) is torsion-free, and is free if
and only if E is torsion-free. In the latter case, any two such actions are weakly
equivariant.

Proof. Pick Γ a characteristic predivisible subgroup in Π. Then we have a com-
mutative diagram as in the above corollary. And we get an action of E/Γ on
Γ\S/K = M(Γ) and an action of F on M ′ = θ(Π)\S/K, realizing ψ on M ′. Since
the torsion-free Π is poly–Z (respectively, poly (cyclic or finite)), a theorem of
Wall

♣
(respectively, Farrell-Jones)

♣
says that any homotopy equivalence between Wall:ref

Farrell-Jones:refM and M ′ is homotopic to a homeomorphism. Therefore, we need only pull back
the action of F on M ′ to obtain the desired action on M . By uniqueness, we have
that any two free actions on M ′ will be weakly equivariant. �

2.2.15 Theorem. Let G be a semi-simple centerless Lie group without any nor-
mal compact factors and if G contains any 3-dimensional factors (i.e., PSL(2,R)),
then the projection of the lattice to each of these factors is dense. Let M(θ(Π)) =
θ(Π)\(G/K × W ) be a Seifert manifold with principal fiber Γ\G/K. Suppose
(Π/Γ,W ) is finitely extendable. Then each abstract kernel ψ : F → Out(Π,Γ)
of a finite group F can be geometrically realized as an (effective, resp) group of
Seifert automorphisms on M(θ(Π)) if and only if the abstract kernel ψ admits an
(admissible, resp) extension.

Proof. Same argument as Theorem ??. �

2.2.16 Corollary. Let G be as in the above theorem, and let M = θ(Π)\G/K.
Then each abstract kernel ψ : F → Out(Π,Γ) of a finite group F can be geometri-
cally realized as an (effective, resp) group action on M if and only if the abstract
kernel ψ admits an (admissible, resp) extension.
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affine structure on Γ
affine crystallographic

group
ACG
polynomial structure

on Γ
polynomial

crystallographic
group

PCG

Suppose F is a group, and ϕ : F → Out(Π) a homomorphism.
The obstruction to the existence of an extension with the given
abstract kernel lies in H3(F ;Z(Π)).
should have had in Lie group chapter? If F is finite, then the

obstruction class has a finite order. In the case when G
is solvable as in Theorem ??, Z(Π) ∼= Z

k for some k ≥
0. By enlarging the group Z

k to ( 1
pZ)k for some p, one

can kill the obstruction. This implies that, if we enlarge Π
to ( 1

pZ)k · Π, then the abstract kernel has an extension E.

should expand... H3 Now if Π is normal inside E, then we
would have an action of E/Π on M . Note that E/Π contains
F . give reference to Zimmermann— for the term “inflation”?

For more examples and explicit calculations. Maybe orig or flat case.

2.3. Manifolds with few periodic maps

New section. Better one than #299?

2.4. Polynomial Structures for Solvmanifolds

The main reference for this section is [?]. In 1977 ([?]), John Milnor asked if
every torsion-free polycyclic–by–finite group Γ occurs as the fundamental group of
a compact, complete affinely flat manifold. This is equivalent to asking that if Γ
can act on RK properly as affine motions with Γ\RK compact.

Recently however, Y. Benoist ([?], [?]) produced an example of a 10–step nilpo-
tent group Γ of Hirsch length 11 which does not admit an affine structure. This
example was generalized to a family of examples by D. Burde and F. Grunewald
([?]). In ([?]) Burde constructs counter-examples of nilpotency class 9 and Hirsch
length 10.

A polynomial diffeomorphism f of Rn is a bijective polynomial transformation
of Rn for which the inverse mapping is again polynomial. Let us write P(Rn) for the
group consisting of all polynomial diffeomorphisms. Affine diffeomorphisms clearly
are polynomial diffeomorphisms of degree ≤ 1; smooth actions could be considered
as being “polynomial of infinite degree”.

A representation θ : Γ→ Aff(RK) which yields a proper action with θ(Γ)\RK
compact is called affine structure on Γ. It is also common to call θ(Γ) an affine
crystallographic group (ACG) ([?], [?]). Analogously to the affine structure, a rep-
resentation θ : Γ→ P(RK) which yields a proper action with θ(Γ)\RK compact is
called polynomial structure on Γ; θ(Γ) is called a polynomial crystallographic group
(PCG) . In this section, we sketch a proof of the following:
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Theorem Every polycyclic-by-finite group Γ admits a polynomial structure of
bounded degree. That is, Γ can act on RK properly as polynomial diffeomorphisms
so that Γ\RK is compact. Moreover, all polynomials involved consist entirely of a
bounded degree.

The construction of this polynomial structure is a special case of an iterated
Seifert Fiber Space construction, which can be achieved here because of a very
strong and surprising cohomology vanishing theorem.

2.4.1(Polynomial Diffeomorphisms). Write P(RK ,Rk) for the real vector space of
polynomial mappings from R

K to Rk. An element p(x1, . . . , xK) of P(RK ,Rk)
consists of k polynomials in K variables:

p(x1, . . . , xK) =


p1(x1, x2, . . . , xK)
p2(x1, x2, . . . , xK)

...
pk(x1, x2, . . . , xK)

 , with pi(x1, . . . , xK) ∈ P(RK ,R).

By the degree of p, denoted by deg(p), we mean of course the maximum of the
degrees of the pi (1 ≤ i ≤ k). Note in particular, that P(RK ,Rk) contains Rk as
the subgroup of constant mappings (degree-0 mappings).

We denote by P(RK) the group of polynomial diffeomorphisms of RK . Here,
the group-law is composition of mappings (so P(RK) is a subset of P(RK ,RK),
but not a subgroup). Elements of P(RK) are polynomial bijections whose inverse
mappings are again polynomials.

Example. Let p, q : R2 → R
2 be such that

p(x, y) = (y + 1, x+ y2) and q(x, y) = (y − x2 + 2x− 1, x− 1).
Clearly, they are inverse to each other in P(R2).

The vector space P(RK ,Rk) has GL(Rk)× P(RK)–module structure, via

∀(g, h) ∈ GL(Rk)× P(RK), ∀p ∈ P(RK ,Rk) : (g,h)p = g ◦ p ◦ h−1.

The resulting semi–direct product P(RK ,Rk)o(GL(Rk) × P(RK)) embeds into
P(Rk+K) as follows: ∀p ∈ P(RK ,Rk), ∀g ∈ GL(Rk), ∀h ∈ P(RK) :

∀x ∈ Rk, ∀y ∈ RK : (p, g, h)(x, y) = (g(x) + p(h(y)), h(y)).

The crux of the construction is the iteration of the following procedure. Let

1→ Z
k → Π → Q→ 1

be an exact sequence with abstract kernel ϕ : Q→ GL(k,R). Let

ρ : Q→ P(RK)

be a representation which yields a proper action of Q on RK with Q\RK compact.
We try to find a homomorphism θ : Π → P(RK ,Rk)o(GL(k,R)× P(RK)) so that
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the diagram
1 −−−−−−→ Z

k −−−−−−→ Π −−−−−−→ Q −−−−−−→ 1

i

y θ

y ϕ×ρ
y

1 −−−−−−→ P(RK ,Rk) −−−−−−→ P(RK ,Rk)o(GL(k,R)× P(RK)) −−−−−−→ GL(k,R)× P(RK) −−−−−−→ 1

where i : Zk → R
k ⊂ P(RK ,Rk) is the standard translations, is commutative.

Note that
P(RK ,Rk) ⊂ M(RK ,Rk) and P(RK) ⊂ TOP(RK)

and therefore,

P(RK ,Rk)o(GL(k,R)× P(RK)) ⊂−−−−→ P(RK+k)

∩
y ∩

y
M(RK ,Rk)o(GL(k,R)× TOP(RK)) ⊂−−−−→ TOP(RK+k)

See Corollary ??.

2.4.2(Canonical type polynomial representations). It is well known ([?, lemma 6,
pp. 16]) that, if Γ is a polycyclic–by–finite group, then there exists an ascending
sequence (or filtration) of normal subgroups Γi (0 ≤ i ≤ c+ 1) of Γ

Γ∗ : Γ0 = 1 ⊆ Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γc−1 ⊆ Γc ⊆ Γc+1 = Γ (2.4–1)

for which

Γ/Γi ∼= Z
ki for 1 ≤ i ≤ c and some ki ∈ N0 and Γ/Γc is finite.

Let us call such a filtration of Γ a torsion–free filtration (of length c). We will
also use Ki = ki + ki+1 + · · ·+ kc and Kc+1 = 0.

Since Γ/Γc is a finite group, the trivial homomorphism ρc : Γ/Γc → P(R0)
exists. Therefore,

Hj(Γ/Γc; P(R0,Rkc)) = Hj(Γ/Γc;Rkc) = 0

for j > 0. This implies that there exists a homomorphism

ρc−1 : Γ/Γc−1 → Pc = P(R0,Rkc)o(GL(kc,R)× P(R0))

which makes the following diagram commutative:
1 −−−−−−→ Z

kc ∼= Γ/Γc −−−−−−→ Γ/Γc−1 −−−−−−→ Γ/Γc −−−−−−→ 1

jc

y ρc−1
y ϕc×ρc

y
1 −−−−−−→ P(R0,Rkc ) −−−−−−→ Pc −−−−−−→ GL(kc,R)× P(R0) −−−−−−→ 1

Observe that Pc ⊂ P(RKc). Now suppose we found

ρi−1 : Γ/Γi−1 → Pi = P(RKi+1 ,Rki)o(GL(ki,R)× P(RKi+1))

which fits the following commuting diagram
1 −−−−−−→ Z

ki ∼= Γ/Γi −−−−−−→ Γ/Γi−1 −−−−−−→ Γ/Γi −−−−−−→ 1

ji

y ρi−1
y ϕi×ρi

y
1 −−−−−−→ P(R

Ki+1 ,Rki ) −−−−−−→ Pi −−−−−−→ GL(ki,R)× P(R
Ki+1 ) −−−−−−→ 1
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Iterating this procedure, we will have found a desired homomorphism Γ→ P(RK).
The existence of ρi−1 is guaranteed by

H2(Γ/Γi; P(RKi+1 ,Rki )) = 0

as the proof of the general construction shows. See Theorem ??. Also,

H1(Γ/Γi; P(RKi+1 ,Rki )) = 0

guarantees the uniqueness of such ρi−1 (with fixed ji and ψi × ρi). These are
achieved by the following

Lemma If Γ is a polycyclic-by-finite group admitting a canonical type polynomial
representation ρ : Γ→ P(Rm), then, for every representation ϕ : Γ→ GL(Rn) and
for all i > 0 Hi

ϕ×ρ(Γ,P(Rm,Rn)) = 0.

The major work of the paper [?] is proving this Lemma. We refer the readers
to that paper.

(1) Kamishima’s Conformal stuff into Appl.
(2) Take out “realization” from double coset and put in Appl.
(3) Few periodic maps
(4) maximal torus action into where?

2.5. Applications to Fixed-point Theory

We show that Bieberbach’s rigidity theorem for flat manifolds still holds true
for any continuous maps on infra-nilmanifolds. Namely, every endomorphism of an
almost crystallographic group is semi-conjugate to an affine endomorphism. Apply-
ing this result to Fixed-point theory, we obtain a criterion for the Lefschetz number
and Nielsen number for a map on infra-nilmanifolds to be equal.

2.5.1. Let G be a connected Lie group. Consider the semi-group Endo(G), the
set of all endomorphisms of G, under the composition as operation. We form the
semi-direct product GoEndo(G) and call it aff(G). With the binary operation

(a,A)(b, B) = (a ·Ab,AB),

the set aff(G) forms a semi-group with identity (e, 1), where e ∈ G and 1 ∈ Endo(G)
are the identity elements. The semi-group aff(G) “acts” on G by

(a,A) · x = a ·Ax

Note that (a,A) is not a homeomorphism unless A ∈ Aut(G). Clearly, aff(G)
is a subsemi-group of the semi-group of all continuous maps of G into itself, for
((a,A)(b, B))x = (a,A)((b, B)x) for all x ∈ G. We call elements of aff(G) affine
endomorphisms.
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2.5.2(Generalization of Bieberbach’s second Theorem). Let G be a connected and
simply connected nilpotent Lie group. In Chapter ??, we have seen: Let π, π′ ⊂
Aff(G) be two almost crystallographic groups. Then for any isomorphism θ : π →
π′, there exists g = (a,A) ∈ Aff(G) such that θ(α) = g · αg−1 for all α ∈ π.

We shall generalize this result to all homomorphisms (not necessarily iso-
morphisms). Topologically, this implies that every continuous map on an infra-
nilmanifold is homotopic to a map induced by an affine endomorphism on the Lie
group level. It can be stated as: every endomorphism of an almost crystallographic
group is semi-conjugate to an affine endomorphism.

2.5.3 Theorem. Let π, π′ ⊂ Aff(G) be two almost crystallographic groups. Then
for any homomorphism θ : π → π′, there exists g = (d,D) ∈ aff(G) such that
θ(α) · g = g · α for all α ∈ π.

2.5.4 Example. The subgroup Γ = π ∩G of of an almost crystallographic group π
is characteristic, but not fully invariant. The homomorphism θ in the theorem 1.1
may not map the maximal normal nilpotent subgroup Γ of π into that of π′. This
causes a lot of trouble. Let π be an orientable 4-dimensional Bieberbach group
with holonomy group Z2. More precisely, π ⊂ R

4
oO(4) = E(4) ⊂ Aff(R4) is

generated by (e1, I), (e2, I), (e3, I), (e4, I) and (a,A), where a = (1/2, 0, 0, 0)t, and
A is diagonal matrix with diagonal entries 1,−1,−1 and 1. Note that (a,A)2 =
(e1, I). The subgroup generated by (e1, I), (e2, I), (e3, I), and (a,A) forms a 3-
dimensional Bieberbach group G2, and π = G2×Z. Consider the endomorphism θ :
π → π which is the composite π → Z→ π, where the first map is the projection onto
Z = 〈(e4, I)〉 and the second map sends (e4, I) to (a,A). Thus the homomorphism
θ does not map the maximal normal abelian subgroup Z4 (generated by the 4
translations) into itself. Such a Z4 is characteristic but not fully invariant in π. Let

d =


x
0
0
y

 , D =


0 0 0 1/2
0 0 0 0
0 0 0 0
0 0 0 0


and let g = (d,D). Then it is easy to see θ(α) · g = g · α for all α ∈ π.

According to the proposition 1.4, the element g = (d,D) is the most general
form. The matrix D is uniquely determined and the translation part d can vary
only in two dimensions.

Proof of Theorem. Let Γ = π ∩ G, Γ′ = π′ ∩ G. As the example shows, the
characteristic subgroup Γ may not go into Γ′ by the homomorphism θ. Let Λ =
Γ∩θ−1(Γ′). Then Λ is a normal subgroup of π and has a finite index. Let Q = π/Λ.

Consider the homomorphism Λ→ Γ′ ↪→ G, where the first map is the restriction
of θ. Since Λ is a lattice of G, by Malćev’s work, any such a homomorphism extends
uniquely to a continuous homomorphism C : G→ G, cf. [?, 2.11]. Thus, θ|Λ = C|Λ,
where C ∈ Endo(G); and hence, θ(z, 1) = (Cz, 1) for all z ∈ Λ (more precisely,
(z, 1) ∈ Λ).
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Let us denote the composite homomorphism π → π′ → GoAut(G)→ Aut(G)
by θ; and define a map f : π → G by

θ(w,K) = (Cw · f(w,K), θ(w,K)) (1)

For any (z, 1) ∈ Λ and (w,K) ∈ π, apply θ to both sides of (w,K)(z, 1)(w,K)−1 =
(w ·Kz ·w−1, 1) to get Cw ·f(w,K) · θ(w,K)(Cz) ·f(w,K)−1 · (Cw)−1 = θ(w ·Kz ·
w−1). However, w ·Kz ·w−1 ∈ Λ since Λ is normal in π, and the latter term equals
to C(w · Kz · w−1) = Cw · CKz · (Cw)−1 since C : G → G is a homomorphism.
From this we have

θ(w,K)(Cz) = f(w,K)−1 · CKz · f(w,K) (2)

This is true for all z ∈ Λ. Note that θ(w,K) and K are automorphisms of the Lie
group G; and C : G → G is an endomorphism. By the uniqueness of extension of
a homomorphism Λ → G to an endomorphism G → G, as mentioned above, the
equality (2) holds true for all z ∈ G. It is also easy to see that f(zw,K) = f(w,K)
for all z ∈ Λ so that f : π → G does not depend on Λ. Thus, f factors through
Q = π/Λ. Moreover, θ : π → Aut(G) also factors through Q since Λ maps trivially
into Aut(G). We still use the notation (w,K) to denote elements of Q and θ to
denote the induced map Q→ Aut(G). ???? �

Claim With the Q-structure on G via θ : Q→ Aut(G), f ∈ Z1(Q;G); i.e., f : Q→
G is a crossed homomorphism.

Proof. We shall show f((w,K) · (w′,K ′)) = f(w,K) · θ(w,K)f(w′,K ′) for all
(w,K), (w′,K ′) ∈ π. (Note that we are using the elements of π to denote the
elements of Q). Apply θ to both sides of (w,K)(w′,K ′) = (w ·Kw′,KK ′) to get
Cw · f(w,K) · θ(w,K)[Cw′ · f(w′,K ′)] = C(w ·Kw′) · f((w,K)(w′,K ′)). From this
it follows that

f((w,K)(w′,K ′)) = (CKw′)−1 · f(w,K) · θ(w,K)(Cw′) · θ(w,K)f(w′,K ′)

From (2) we have θ(w,K)Cw′ = f(w,K)−1 · CKw′ · f(w,K) so that f((w,K) ·
(w′,K ′)) = f(w,K) · θ(w,K)f(w′,K ′).

In [?], it was proved that H1(Q;G) = 0 whenever Q is a finite group and G is
a connected and simply connected nilpotent Lie group. The proof uses induction
on the nilpotency of G together with the fact that H1(Q;G) = 0 for a finite group
Q and a real vector group G. This means that any crossed homomorphism is
“principal”. In other words, there exists d ∈ G such that

f(w,K) = d · θ(w,K)(d−1) (3)

Let D = µ(d−1) ◦C and g = (d,D) ∈ aff(G), and we check that θ is “conjuga-
tion” by g. Using (1), (2) and (3), one can show θ(w,K)◦µ(d−1)◦C = µ(d−1)◦C◦K.
Thus, for any (w,K) ∈ π,

θ(w,K) · (d,D) = (Cw · f(w,K), θ(w,K)) · (d, µ(d−1) ◦ C)
= (Cw · f(w,K) · θ(w,K)(d), θ(w,K) ◦ µ(d−1) ◦ C)
= (Cw · d · θ(w,K)(d−1) · θ(w,K)(d), θ(w,K) ◦ µ(d−1) ◦ C)
= (Cw · d, µ(d−1) ◦ C ◦K)
= (d,D) · (w,K).

This finishes the proof of theorem. �
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2.5.5 Corollary. Let M = π\G be an infra-nilmanifold, and h : M →M be any
map. Then h is homotopic to a map induced from an affine endomorphism G→ G.

Proof. We start with the homomorphism h# : π1(M)→ π1(M), induced from h,
as our θ in the Theorem ?? and obtain g̃ = (d,D) satisfying

h#(α) ◦ g̃ = g̃ ◦ α.

Let g : M → M be the induced map. Then h# = g#. Since any two continuous
maps on a closed aspherical manifold inducing the same homomorphism on the
fundamental group (up to conjugation by an element of the fundamental group)
are homotopic to each other, h is homotopic to g. This completes the proof of the
corollary. �

2.5.6 Corollary ([?],[?]). Homotopy equivalent infra-nilmanifolds are affinely dif-
feomorphic.

Now we consider the uniqueness problem: How many g’s are there? Let Φ =
π/(G ∩ π) ⊂ Aut(G) and Φ′ = π′/(G ∩ π′) ⊂ Aut(G) be the holonomy groups of π
and π′. Let Ψ′ be the image of θ(π) in Φ′. So Φ′ ⊂ Aut(G). Let GΨ′ denote the
fixed point set of the action. For c ∈ G, µ(c) denotes conjugation by c. Therefore,
µ(c)(x) = cxc−1 for all x ∈ G. The group of all inner automorphisms is denoted by
Inn(G).

2.5.7 Proposition (Uniqueness). With the same notation as above, suppose θ(α) ·
g = g · α for all α ∈ π. Then θ(α) · γ = γ · α for all α ∈ π if and only if γ = ξ · g,
where ξ = (c, µ(c−1)), for c ∈ GΨ′ . Therefore, D is unique up to Inn(G). If θ
is an isomorphism, then c ∈ GΦ′ . In particular, if π is a Bieberbach group with
H1(π;R) = 0 and θ is an isomorphism, then such a g is unique.

Proof. Let g = (d,D), γ = (c, C). Since θ(α) ·g = g ·α holds when α = (z, 1) ∈ Λ,
we have Dz = d−1z′d, where θ(z, 1) = (z′, 1). Similarly, Cz = c−1z′c. Thus Cz =
µ(c−1d)Dz for all z ∈ Λ. Since Λ is a lattice, this equality holds onG. Consequently,
C = µ(c−1d)D. Now γ = (c, C) = (c, µ(c−1d)D) = (d−1c, µ(c−1d))(d,D) =
(h, µ(h−1))(d,D), if we let h = d−1c. Set ξ = (h, µ(h−1)). Then γ = ξ · g. Now we
shall observe that h ∈ GΨ′ . Let θ(α) = (b, B). Then θ(α)ξg = θ(α)γ = γα = ξgα =
ξθ(α)g yields Bh = h for all (b, B) = θ(α). Clearly then B ∈ Ψ′ by definition. For
a Bieberbach group π, note that rank H1(π;Z) = dim GΦ. �

2.5.8(Application to Fixed-point theory). Let M be a closed manifold and let f :
M →M be a continuous map. The Lefschetz number L(f) of f is defined by

L(f) :=−→
k

Σ trace{(f∗)k : Hk(M ;Q)→ Hk(M ;Q)}

To define the Nielsen number N(f) of f , we define an equivalence relation on Fix(f)
as follows: For x0, x1 ∈ Fix(f), x0 ∼ x1 if and only if there exists a path c from x0

to x1 such that c is homotopic to f ◦ c relative to the end points. An equivalence
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class of this relation is called a fixed point class (=FPC) of f . To each FPC F , one
can assign an integer ind(f, F ). A FPC F is called essential if ind(f, F ) 6= 0. Now,

N(f) := the number of essential fixed point classes.

These two numbers give information on the existence of fixed point sets. If
L(f) 6= 0, every self-map g of M homotopic to f has a non-empty fixed point set.
The Nielsen number is a lower bound for the number of components of the fixed
point set of all maps homotopic to f . Even though N(f) gives more information
than L(f) does, it is harder to calculate. If M is an infra-nilmanifold, and f is
homotopically periodic, then it is known that L(f) = N(f).

2.5.9 Lemma. Let B ∈ GL(n,R) with a finite order. Then det(I −B) ≥ 0.

Proof. Since B has finite order, it can be conjugated into the orthogonal group
O(n). Since all eigenvalues are roots of unity, there exists P ∈ GL(n,R) such that
PBP−1 is a block diagonal matrix, with each block being a 1×1, or, a 2×2-matrix.
All 1 × 1 blocks must be D = [±1], and hence det(I − D) = 0 or 2. For a 2 × 2

block, it is of the form
[

cos t sin t
− sin t cos t

]
. Consequently, each 2 × 2-block D has the

property that det(I −D) = (1− cos t)2 + sin2 t = 2(1− cos t) ≥ 0. �

2.5.10 Theorem. Let f : M → M be a continuous map on an infra-nilmanifold
M = π\G. Let g = (d,D) ∈ aff(G) be a homotopy lift of f by Corollary 1.2. Then
L(f) = N(f) (resp., L(f) = −N(f)) if and only if det(I − D∗A∗) ≥ 0 (resp.,
det(I −D∗A∗) ≤ 0) for all A ∈ Φ, the holonomy group of M .

Proof. Since L(f) and N(f) are homotopy invariants, we may assume that f = g.
Let Γ = π ∩G, and let Λ = Γ ∩ f−1

# f#(Γ ∩ f−1
# (Γ)). Then Γ is a normal subgroup

of π, of finite index. Moreover, f# : π → π maps Λ into itself. Therefore, f induces
a map on the finite-sheeted regular covering space Λ\G of π\G.

Let f̃ be a lift of f to Γ\G. Then

L(f) =
1

[π : Λ]
Σ ind(f, pΛFix(αf̃))

N(f) =
1

[π : Λ]
Σ |ind(f, pΛFix(αf̃))|

where the sum ranges over all α ∈ π/Λ. See, [?, III 2.12]. However, each αf̃

is a map on the nilmanifold Λ\G, and hence ind(f, pΛFix(αf̃)) is determined by
det(I − (αf)∗). It is not hard to see that, for any α ∈ Inn(G), α∗ has eigenvalue
only 1. Therefore, it is enough to look at elements with non-trivial holonomy. Now
the hypothesis guarantees that det(I − (αf)∗) = det(I −D∗A∗) ≥ 0 or ≤ 0 always.
Consequently, L(f) = N(f) or L(f) = −N(f).

Conversely, suppose L(f) = N(f) (resp. L(f) = −N(f)). Let α = (a,A) ∈ π.
If Fix(g ◦α) = ∅, then clearly det(I −D∗A∗) = 0. Otherwise, Fix(g ◦α) is isolated,
and the indices at these fixed points are det(I − D∗A∗). By the formula above
relating L(f), N(f) with the ones on covering spaces, all det(I −D∗A∗) must have
the same sign. This proves the theorem. �
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2.5.11 Corollary ([?]). Let f : M → M be a homotopically periodic map on an
infra-nilmanifold. Then N(f) = L(f).

Proof. Here is an argument which is completely different from the one in [?]. Let
Γ = π ∩ G, and Φ = π/Γ, the holonomy group. Let g = (d,D) ∈ GoAut(G) be
a homotopy lift of f to G. Let E be the lifting group of the action of 〈g〉 to G.
That is, E is generated by π and g. Then E/Γ is a finite group generated by Φ
and D. For every A ∈ Φ, DA lies in E/Γ, and has a finite order. By Lemma 2.1,
det(I −DA) ≥ 0 for all A ∈ Φ. By Theorem 2.2, L(f) = N(f). �

Let S be a connected, simply connected solvable Lie group and H be a closed
subgroup of S. The coset space H\S is called a solvmanifold.

2.5.12 Corollary ([?]). Let f : M → M be a homotopically periodic map on an
infra-solvmanifold. Then N(f) = L(f).

Proof. In [?], the statement for solvmanifolds was proved. We needed a subgroup
invariant under f#. To achieve this, a new model space M ′ which is homotopy
equivalent to M , together with a map f ′ : M ′ → M ′ corresponding to f was con-
structed. The new space M ′ is a fiber bundle over a torus with fiber a nilmanifold;
and f ′ is fiber-preserving. Moreover, we found a fully invariant subgroup Λ of π of
finite index (so, is invariant under f ′#). Now we can apply the same argument as
in the proof of Theorem 2.2. �

2.5.13 Example. Let π be an orientable 3-dimensional Bieberbach group with
holonomy group Z2. More precisely, π ⊂ R

3
oO(3) = E(3) is generated by

(e1, I), (e2, I), (e3, I) and (a,A), where a = (1/2, 0, 0)t, A is a diagonal matrix
with diagonal entries 1,−1 and −1. Note that (a,A)2 = (e1, I). Let M = R

3/π be
the flat manifold. Consider the endomorphism θ : π → π which is defined by the
conjugation by g = (d,D), where

d =

0
0
0

 , D =

3 0 0
0 0 1
0 2 0


Let f : M → M be the map induced from g. There are only two conjugacy
classes of g; namely, g and αg. Fix(g) = (0, 0, 0)t and Fix(αg) = (1/4, 0, 0)t. Since
det(I −D) = det(I −AD) = +2, L(f) = N(f) = 2.

The Lefschetz number can be calculated from homology groups also.
(1) H0(M ;R) = R; f∗ is the identity map.
(2) H1(M ;R) = R, which is generated by the element (e1, I).

f∗ is multiplication by 3 (the (1,1)-entry of D).

(3) H2(M ;R) = R; f∗ is multiplication by det
[
0 1
2 0

]
= −2.

(4) H3(M ;R) = R; f∗ is multiplication by det(D) = −6.
Therefore, L(f) = Σ(−1)itracef∗ = 1 − 3 + (−2) − (−6) = 2. Note that f has
infinite period, and this example is not covered by Corollary 2.3.
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2.5.14 Example. Let π be same as in Example 2.5. This time g = (d,D), is given
by

d =

0
0
0

 , D =

3 0 0
0 1 1
0 1 2


Let f : M → M be the map induced from g. There are six conjugacy classes of
g; namely, g and αg, αt1g, αt21g, αt31g, and αt41g, Each class has exactly one fixed
point. Clearly, det(I −D) = +2 and det(I −AD) = −10. Therefore, the first fixed
point has index +1 and the rest have index −1. Consequently, L(f) = −4, while
N(f) = 6.

b-maxtoral.tex

2.6. Maximal torus actions on solvmanifolds and double coset spaces

2.6.1(Maximal torus action on infra-nilmanifolds). Let M be an infra-nil (infra-
toral) manifold. Then we claim the following sequence is exact:

1→ Aff0(M)→ Aff(M)→ Out(π1(M))→ 1,

Explain the meaning of Aff(M) where Aff(M) is the group of affine self diffeomor-

phisms of M . Since M̃ = G is a simply connected nilpotent Lie group, M = Π\G
with Π ⊂ Aff(G),

NAff(G)(Π)/Π = Aff(M).
This is a Lie group. Now every self homotopy equivalence induces an automorphism
of Π, unique up to an inner automorphism. The homotopy classes of self homotopy
equivalences is in 1-1 correspondence with Out(Π). Then every isomorphism Π →
Π is given by conjugation by a homeomorphism in Aff(G) and an automorphism of
Π will have a realization in NAff(G)(Π). Thus Aff(M) = NAff(G)(Π)/Π → Out(Π)
is onto. We are interested in the kernel of this homomorphism. Look at the following
commutative diagram:

1 1 1y y y
1 −−−−→ Z(Π) −−−−→ CAff(G)(Π) −−−−→ CAff(G)(Π)/Z(Π) −−−−→ 1y y y
1 −−−−→ Π −−−−→ NAff(G)(Π) −−−−→ Aff(M) −−−−→ 1y y y
1 −−−−→ Inn(Π) −−−−→ Aut(Π) −−−−→ Out(Π) −−−−→ 1y y y

1 1 1
We see the kernel of Aff(M)→ Out(Π) is CAff(G)(Π)/Z(Π). There are two differ-
ent ways of expressing Aff(G). Namely,

Aff(G) = r(G)oAut(G)
= `(G)oAut(G).
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maximal torus action The actions on x ∈ G are as follows:

(r(a), α) · x = α(x) · a−1, (`(a), α) · x = a · α(x).

Clearly, the correspondence

(a, α)←→ (a−1, µ(a) ◦ α)

is a bijective map between r(G)oAut(G) and `(G)oAut(G). The first expression
is more natural with respect to the Seifert Construction because

TOPG(G× {w}) = M({w}, G)o(Aut(G)× TOP({w}))
= r(G)oAut(G).

But, in this section, we shall use Aff(G) = `(G)oAut(G).
Do we need to remind the definitions of infranil, almost B?

2.6.2 Theorem. Let M = Π\G be an infra-nilmanifold, where G be a simply con-
nected nilpotent Lie group, Π ⊂ GoAut(G) an almost Bieberbach group. Then
Aff0(M) = CAff(G)(Π)/Z(Π) = GQ/Z(Π) (Q the holonomy group), and it con-
tains a maximal torus action (see section 1.15.12) Z(GQ)/Z(Π).

Proof. We want to show CAff(G)(Π)/Z(Π) is connected (as a Lie subgroup). Let
(a, α) ∈ CAff(G)(Π). Then (a, α) must centralize Γ ⊂ Π and so also all of G. Thus,

(a, α)(g, 1) = (g, 1)(a, α)

which implies α(g) = a−1ga for all g ∈ G. Thus α = µ(a−1). Therefore each
element of CAff(G)(Π) must be of the form (a, µ(a−1)) = r(a). Now it must also
centralize Π. Let Π ∩ G = Γ and Π/Γ = Q. Then the holonomy group Q injects
into Aut(G) naturally and we have a commutative diagram

1 −−−−→ Γ −−−−→ Π −−−−→ Q −−−−→ 1y y y
1 −−−−→ G −−−−→ GoAut(G) −−−−→ Aut(G) −−−−→ 1

Let (y, β) ∈ Π. Then (a, u(a−1))(y, β) = (y, β)(a, µ−1(a)) implies ya = yβ(a) for
all y ∈ Γ. Thus a = β(a). That is, as we run through all the β ∈ Q, β(a) = a so
that a ∈ GQ, a closed subgroup of G. Clearly GQ is a simply connected nilpotent
subgroup, best seen from the Lie algebra. We have

Aff0(M) = CAff(G)(Π)/Z(Π)
= {(a, u(a−1)) : a ∈ GQ}/Z(Π)
∼= r(GQ)/Z(Π)

Since Z(Π) ⊂ Z(G), we have Z(Π) ⊂ Z(G)Q. It is easy to see that Z(Π) is a
uniform lattice of Z(G)Q, and so Z(GG)/Z(Π) is a torus, acting effectively on M .
Since Π1(Z(GG)/Z(Π)) = Z(Π), this torus action is a maximal torus action by
Corollary 1.15.13. Note GQ/Z(Π) may not be compact.

♣
�Related to Tondeor-

Kamber. Aff is not
ordinary metric con-
nection.

2.6.3 Example (Klein bottle). The fundamental group has presentation Π =
{a, b | a2b2 = 1}. Z(Π) = {a2}; the maximal normal abelian subgroup is

Γ = R
2 ∩Π = {a2, b|[a2, b] = 1};
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holonomy groupand the holonomy group is Q = Z/2. The universal covering space is the abelian
Lie group G = R

2, and GQ = R
1 with GQ ∩Π = {a2} ≈ Z. Therefore, Aff0(M) ∼=

GQ/Z(Π) = R/Z = S1, a circle. This is the maximal torus action by affine
diffeomorphisms (in fact, isometries).

2.6.4 Exercise. Find Out(π1(Kleinbottle)) (Answer: Z2 × Z2). Find
Aut(π1(Kleinbottle)).

2.6.5 Example. Let G be a simply connected nilpotent Lie group, Π ⊂ GoAut(G)
an almost Bieberbach group. Suppose Γ = Π.

♣
That is, Π has trivial holonomy Why did you circle

it?group Q. Then GQ = G since Q = 1. Therefore,

Aff0(M) = GQ/Z(Γ) = G/Z(Γ).

Topologically, this is a product Z(G)/Z(Γ) × G/Z(G), of a torus with a simply
connected nilpotent Lie group. This is the covering space of M corresponding to
the image of the evaluation homomorphism of the maximal torus action. Note
that Γ/Z(Γ) is a lattice in G/Z(G). Consequently, the maximal torus action on a
nilmanifold is free.

2.6.6 Corollary. Let G be a simply connected nilpotent Lie group, Π ⊂
GoAut(G) an almost Bieberbach group. Then

Aff0(M) = r(GQ)/Z(Π)

contains a toral subgroup Z(G)Q/Z(Π), and quotient group a simply connected
nilpotent Lie group GQ/Z(G)Q. Therefore, if G = R

n (i.e., Π is a Bieberbach
group), Then then Aff0(M) is a torus GQ/Z(Π).

♣
� This coro is the same

as the Theorem ex-
cept the last sen-
tence.

2.6.7 Remark. The torus is a maximal torus action and represents also the con-
nected component of the full isometry group. This works also for the case of infra-
solvmanifolds where G is of type (R), the (S-3)-case. The same argument applies.
See subsection ??.

NEW

2.6.8 Proposition. Let G be a finite group acting freely on a space M such that
π1(M) and π1(G\M) are torsion-free. Assume Z(π1(M)) is finitely generated and
that every element of G is homotopic to the identity. Then

(1) π1(M) and π1(G\M) have non-trivial centers of rank k ≥ 1,
(2) G is an abelian group of rank ≤ k (i.e., can be embedded in a k-torus),
(3) the center of π1(G\M) is the centralizer of π1(M) in π1(G\M) and is an

extension of Z(π1(M)) by G.

Proof. The lifting sequence (see subsection 1.8.1)
♣

for the G action is given by Do we put these
sort of things every-
where?1→ π1(M)→ π1(G\M)→ G→ 1.

Let us abbreviate π1(M) by Π and π1(G\M) by E. Since G acts homotopically
trivially, we have that G goes trivially into Out(Π) and there is induced the exact
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sequence

1 1 1y y y
1 −−−−→ Z(Π) −−−−→ CE(Π) −−−−→ G −−−−→ 1y y y=

1 −−−−→ Π −−−−→ E −−−−→ G −−−−→ 1y y y
1 −−−−→ Inn(Π) −−−−→ Aut(Π) −−−−→ Out(Π) −−−−→ 1

We need only observe that CE(Π) is mapped onto G. Since E is torsion free,
CE(Π) is also torsion free. Since G 6= 1, E = π1(G\M) is not finite and so,
π1(M) = Π is infinite. Therefore, Z(Π) has rank k for some k ≥ 1. (Otherwise,
CE(Π) which is torsion free could not map onto G). The top horizontal row is
a central extension. Since CE(Π) is torsion free and central, CE(Π) ∼= Z

k and
Z(Π) = Z

k is a sub-lattice of CE(Π). The quotient G is isomorphic to a subgroup
of T k.

Now, for e ∈ E, θ(e) goes trivially into Out(Π). Consequently, θ(e) is conju-
gation µ(γ) by some element γ ∈ Π. Therefore, ece−1 = γcγ−1 = c, for c ∈ Z(Π).
So, e acts trivially on Z(Π) and because Z(Π) is a sub-lattice of CE(Π), E also
acts trivially on CE(Π). This implies that CE(Π) is the full center of E. �

2.6.9 Corollary. Let M be closed aspherical manifold with Z(π1(M)) finitely
generated. Let G, a finite group, act effectively, and homotopically trivially on M .
Then

(1) π1(M) has anon-trivial center of rank k ≥ 1.
(2) G is an abelian group of rank ≤ k (i.e., can be embedded in to k-torus).
(3) In the lifting sequence 1 → π1(M) → E → G → 1 for (G,M), the center

of E is CE(Π) and is central extension of Z(π1(M)) by G.

Proof. Effectiveness of the G action guarantees that the lifting sequence is an
admissible extension (see subsection ??)

♣
That is, CE(Π) is torsion free. Now, inIs this before? Put it

in Ch 1 the diagram of the proof of the proposition, we observe that Z(π1(M)) 6= 1, for
otherwise G would have to inject into Out(Π). The rest of the argument proceeds
as in the Proposition. �

2.6.10 Corollary. Let M and E be as above except that we assume that M is an
admissible manifold (see subsection ??) instead of a closed aspherical manifold. In
addition, assume that π1(M) is torsion free. Then, the same conclusions hold.

Proof. Here we need to check that CE(Π) is torsion free. If not, there exists a
Zp subgroup, p prime, commuting with π1(M). Since M is an admissible space, Zp
will have to be in the center of π1(M) contradicting that Π is torsion free. �

NEW–END
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2.6.11 Theorem (need air-tight argument). Suppose H is a compact Lie group
of homeomorphisms acting freely and locally smoothly (see subsection XXX)

♣
on No def of “locally

smoothly”. Put
one in Chapter 1.
After cohomology
manifold

an infra-nilmanifold M so that every h ∈ H is homotopic to the identity. Then
H is contained in some maximal torus action on M and is topologically equiv-
alent to a restriction of the standard maximal toral action on M , provided that
dimension(H\M) 6= 3.

Proof. The connected component of id in H is a torus of dimension, say s, (be-
cause M is aspherical). Let π1(M) = Π. Then by Corollary 1.15.10, π1(H0) ∼= Z

s

is a direct summand of Z(π1(M)). Then Π/Zs is again virtually nilpotent and
torsion free since the action of H0 is free and effective.

Now we have a standard maximal torus action on M . Say Gk ∼= T k. We can
re-parametrize Gk = Gs × Gs−k so that the standard action of Gs has the same
evaluation homomorphism as T s. Put Gs\M = N1, and T s\M = N2. They are
topological manifolds because the actions are free and locally smooth. The action
of Gs is free because π1(M)/evx∗(π1(T s)) = Q is torsion free, for otherwise the
T s action could not be free, see Exercise NEW(1.11.10-11). Both N1 and N2 are
aspherical with π1(Ni) = π1(M)/Zs, i = 1, 2.

[Modified from here] We may lift the T s and Gs actions to MIm(evx∗)
= MZs

and we get two splittings

(T s, T s ×Wi) −→ (Qi = π1(M)/Zs,Wi)

and 2 actions of Q on the projections Wi. The projections Wi are both contractible
manifolds (in fact, they are homeomorphic to Rn−s, where n is the dimension of
M). N1 is an infra-nilmanifold because G is a free direct summand of the maximal
torus action, N2 is homeomorphic to N1, by virtue of the theorem of Farrell and
Hsiang for dimension Ni ≥ 5 and for dimension 4 by Freedman, Farrell and Jones.
Therefore, the free Qi actions on Wi, i = 1, 2, are weakly equivalent. That is, there
is a homeomorphism h̃ : W1 → W2 and an isomorphism α : Q1 → Q2 so that
h̃(q1w1) = α(q1)h̃(w2), where h̃ is a lift of a homeomorphism h : N1 → N2.

This means that on M , the two torus actions are equivalent by a Seifert auto-
morphism by virtue of the uniqueness and rigidity of Seifert Constructions.

Now we wish to study the finite part. We can assume that H0 = Gs is in the
standard toral action. Let F = H/Gs. We claim that F is a finite abelian group
and that H splits as Gs⊕F with Gs⊕F inside the standard maximal toral action.

Let E be the group of all lifts of the action of H on M so that the following is
exact:

1→ Π → E → H → 1.

Since H → Out(Π) is trivial we have induced

1→ Z(Π)→ CE(Π)→ H → 1

with CE(Π) being the kernel of E → Aut(Π). Thus it is a central extension.
Furthermore it is torsion free. For if not, then we can find a prime p-subgroup P

of CE(Π) which acts on M̃ and has a fixed point set. Then this P ⊂ TOP(M̃)
projects to P ⊂ TOP(M) which is acting freely, a contradiction. We see that
Z(Π) = Z

s ⊕ Zk−s. The inverse image of H0 = Gs ≈ T s lies in CE(Π)0 = R
s and

so we have, by dividing out by Rs,

0→ Z
k−s → CE(Π)/Rs → F → 1
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is exact and CE(Π)/Rs is a subgroup of π1(M/T s) which is also aspherical. Again
CE(Π)/Rs is torsion free since F acts freely and the extension is central.

Note that E/Rs is π1(F\N1) = π1(F\(Gs\M)) which is torsion free. So there-
fore CE(Π)/Rs is the same as Cπ1(F\N1)(π1(N1)) and by the proposition, it is
isomorphic to Zk−s in Z(Π) as a sublattice. Thus, CE(Π) is free abelian and F is
isomorphic to a subgroup of T k−s. Now

1→ R
s → CE(Π)→′ Zk−s → 1

is exact. Since CE(Π) is 2-step nilpotent, it is easily seen that ′Zk−s = CE(Π)/Rs

splits back to CE(Π). Hence, CE(Π) = R
s ⊕′ Zk−s and, T s ⊕ F ⊂ T s ⊕ T k−s.

Therefore on Gs\M = T s\M = N1, we have 2 free F -actions. One we have just
described coming from H/H0 and the other, F ′ coming from F ′ ⊂ Gk−s ⊂ Gk

in the standard maximal torus action on M . This second F -action ′F is induced
from ′

Z
k−s/Zk−s, with ′Zk−s ⊂ Rk−s. Since F and F ′ are free on N1, an infra-

nilmanifold, and π1(F\N1) ∼= π1(F ′\N1), the orbit spaces are homeomorphic by
virtue of [?].

♣
Let k : F\N1 → F ′\N1 be this homeomorphism and k̂ : N1 → N1Right ref?

a lift to N1. Then k̂ ◦ h ◦ k̂−1 conjugates the F action into the F ′ action which is
contained in the projection of the maximal torus action. �

page 71
2 –1

2.6.12 Theorem. Suppose a finite group F acts freely and homotopically trivally
on an infra-nilmanifold M . Then the action of F is topologically equivalent to an
action of a subgroup of the standard maximal torus action on M , and F\M is
homotopic to an infra-nilmanifold.

Proof. We claim that E = F\π1(M) is a torsion free abstract almost crys-
tallographic group. Let G be the simply connected nilpotent Lie group where
π1(M) = Π ⊂ G × Aut(G). Let Γ = Π ∩ G, and Q = Π/Γ, the holonomy. Since
F acts freely, we have that 0 → Z(Π) → CE(Π) → F → 0 is exact and CE(Π) is
free abelian of the same rank as Z(Π), say k (see subsection ??). Therefore, the
maximal normal nilpotent subgroup in E is Γ · CE(Π). Note, CE(Π) = Z(E).

Since E is an almost abstract Bieberbach group containing Γ, we can embed
E via the monomorphism θ into GoC ⊂ GoAut(G) = Aff(G). θ carries Π into
Aff(G) and so there exists ρ ∈ Aff(G) such that µ(ρ) ◦ θ|Π : Π → π1(M) is an
isomorphism.

Thus µ(ρ) ◦ θ(E) is an almost Bieberbach group containing π1(M). The action
of θ(E)/θ(Π) ∼= F , is part of the maximal torus action on π1(M). Since θ(E)
and π1(M)/F are isomorphic, these manifolds are homeomorphic by Farrell-Hsaing
(dimension 6= 3, 4) and Farrell-Jones-Freedman for dimension 4. Consequently, the
action of F on M is topologically equaivleant to a subgroup of the maximal torus
action. �

Ideal statement if Theorem ?? doesn’t work

2.6.13 Theorem. Suppose H is a connected, compact group (resp. a finite group)
acting freely and locally smoothly (see subsection XXX) (resp. topoogically)

♣
on anNo def of “locally

smoothly”. Put
one in Chapter 1.
After cohomology
manifold

infra-nilmanifold M so that every h ∈ H is homotopic to the identity. Then H is
a torus (resp. an abelian group) and the action is topologically equivalent to the
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action of a subtorus (resp. a finite subgroup) of the standard maximal toral action
on M , provided that dimension(H\M) 6= 3.

2.6.14. Replacement of 0.1.10
In our analysis of infra-nilmanifolds (and by the Remark of infra-solvmanifolds

of type (R)), we saw that much of the information about the manifolds is encoded
in the Lie group Aff(M) = NAff(M)(Π)/Π. (This is a special case of the geo-
metric information found in NTOPG(G×W )(Π)/Π for an injective Seifert fibering
M = Π\G × W ). We know that Out(Π) = π0(Aff(M)), but π0(Diff(M)) and
π0(TOP(M)) are much larger. That is, if we take Diff(M)/(homotopic to the
identity in the space of homotopy equivalences), we get Out(Π). In the following
commuting diagram, E(M) is the H-space of all self-homotopy equivalences of M .

Aff(M) inc−−−−→ Diff(M) inc−−−−→ E(M)y y y
π0(Aff(M))

inj−−−−→ π0(Diff(M))
surj−−−−→ π0(E(M))

Note that the composite homomorphism on the bottom π0(Aff(M)) −→ π0(E(M))
is an isomorphism.

The kernel, π0(TOP(M)→ Out(Π) = π0(E(M)), denoted by K is “exotic”. It
is known that when M is a closed aspherical manifold that the element of K have
order 2 (at least when dimension of M is bigger than 10)

♣
. In fact, K is an infinite citeHatcher

quotient of Z∞2 =countable direct sum of Z2’s when dim(M) > 10. We have the
following

2.6.15 Proposition. If M is a closed flat manifold, then no nontrivial finite sub-
group of K can lift to act freey on M , provided dim(M) > 10.

Proof. Let G be a finite subgroup of K and suppose it has a geometric realization
as a group of homeomorphisms acting effectively on M . Each elelement g ∈ G is
homotopic to the identity but not isotopic to the identity, g 6= 1. Moreover, g2 = id.
Let 1 → Π → E → G → 1 be the lifting sequence for (G,M). Becasue G acts
effectively, CE(Zn) is torsion free, normal and maximal abelian and of finite index in
E. (See [?, Proposiition 2]). Thus E is an abstract crystallographic group, and the
rank of G is ≤ rank of the center of π1(M). Now assume G acts freely on M . Then
G\M is homeomorphic to a flat manifold (Farrell-Hsaing) and up to conjugation
by a homeomorphism, the G action lies inside the connected component T k of the
isometry group of M . Thus each term of G is isotopic to the identity which is a
contradiction. See cite[Theorem 4.1]L-R II for more details. �

2.6.16 Remark. We may guarantee that any finite group acting homotopically
trivially on M must act freely if

(1) Z(π1(M)) is a direct summand of π1(M)
(2) The holonomy of M is of odd order (this depends upon G being a 2-group).

Yes. This is true!
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infra-solvmanifold Since G = Z2⊕· · ·⊕Z2, if it does not act freely, there is an element g such that
g2 = id and g is homotopic but not isotopic to the identity. So g fixes some point
in M . So, M̃Z2 6= ∅ and E = π1(M)oZ2. However, because of pathologies with
fixed points (non-freeness), we cannot necessarily put Z2 into some torus action.

Why is infra-solv here?
As we have seen in Chapter 1, any compact, connected Lie group which acts

effectively on a closed aspherical manifold is a torus T k with k ≤ rank of Z(π1(M)),
the center of π1(M). In this section, a smooth maximal torus action is constructed
on each solvmanifold. We also construct smooth maximal torus actions on some
double coset spaces of general Lie groups as applications. The main reference for
this section is [?]. Remove this much ?

2.6.17(Do we need this? Where is it used?). Let S be a connected, simply connected
solvable Lie group, H be a closed subgroup of S. The coset space H\S is called a
solvmanifold. In this section, we consider only the case when H = Γ is discrete so
that Γ is a uniform lattice of G. More generally, let Π be a subgroup of Aff(S) =
SoAut(S) acting freely on S such that Γ = Π ∩ S is a lattice of S and Π/Γ is
finite. We call the orbit space Π\S an infra-solvmanifold . Therefore, a compact
infra-solvmanifold is finitely covered by a solvmanifold.

It is a theorem of Mostow that two compact solvmanifolds of the same fun-
damental group are diffeomorphic. The significance of this statement is seen from
the fact, differently from the nilpotent theory, that the group Γ does not determine
the Lie group S. In other words, given a group Γ, there may exist two distinct
connected, simply connected solvable Lie groups S1, S2 both containing a copy of
Γ as a lattice. Mostow’s theorem says that S1 is diffeomorphic to S2; and Γ\S1 is
diffeomorphic to Γ\S2.

For many closed K(Π, 1)-manifolds, it is verified in [?] that Z(Π) is finitely
generated and the manifold admits a maximal torus action. In fact, one may find
a topological version of Theorem ?? (see below) in [?]. It uses surgery results of
Wall and does not explain how the torus action arises explicitly from the solvable
group S. The following theorem does not rely on surgery theory, and the solution
is given explicitly in terms of Lie theory.

2.6.18 Theorem. Let S be a simply connected solvable Lie group and Π be a lattice
of S. Then the solvmanifold Π\S admits a smooth maximal torus action.

Relation with section ???

Proof. The plan based upon Lie theorey is to construct a new connected and
simply connected solvable Lie group S(Γ) and an embedding of Π into Aff(S(Γ)) =
S(Γ)oAut(S(Γ)) with the following properties: (a) the infra-solvmanifold Π\S(Γ)
is diffeomorphic to the solvmanifold Π\S; and (b) Π\S(Γ) admits a smooth maxi-
mal torus action. The torus action constructed on Π\S(Γ) descends from a central
vector group of S(Γ) which commutes with the affine action of Π on S(Γ). Then
we can pull back the torus action on Π\S(Γ) to Π\S obtaining a smooth maximal
torus action on the solvmanifold Π\S. The reader should find the elementary ex-
ample ?? instructive. It illustrates, in an explicit fashion, some of steps to be taken
in the proof of the theorem. The proof will be given in the following 4 sections.

♣
4 sections
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strongly torsion-free
S group

maximal normal
nilpotent subgroup

strongly torsion-free
S group of type I

predivisible group
Mal’cev completion
nilradical

2.6.19 . Since Π is a lattice of S, it is a strongly torsion-free S group; that is,
Π contains a finitely generated, torsion-free nilpotent normal subgroup D with
the quotient Π/D free abelian of finite rank. Such a group Π contains a unique
maximal normal nilpotent subgroup M which automatically contains [Π,Π]. The
group Π also contains a characteristic subgroup Γ of finite index such that Γ is
strongly torsion-free S group of type I (=predivisible group), and Γ ⊃ M . This
means that

(1) Γ/M is torsion free,
(2) Let µ(γ) be the automorphism of the real nilpotent Lie group MR (see be-

low for notation) containing M as a lattice, induced from the conjugation
by an element γ ∈ Γ. If θ is the eigen-value of the derivative of µ(γ), then

θ|θ|−1 = cos 2πρ+ i sin 2πρ

where ρ is either 0 or irrational.

2.6.20 Notation. For a finitely generated, torsion free nilpotent group D, the
unique connected and simply connected nilpotent Lie group is denoted by DR.
This is the Mal’cev completion.

2.6.21. The short exact sequence of groups 1 → M → Γ → Z
k → 1 induces an

exact sequence 1 → MR → ΓMR → Z
k → 1. One may think ΓMR as the pushout

of M → Γ with M ↪→ MR since (M,MR) has the unique automorphism extension
property. See Definition ??. In other words, ΓMR is the unique group fitting the
following commutative diagram

1 −−−−→ M −−−−→ Γ −−−−→ Z
k −−−−→ 1y y =

y
1 −−−−→ MR −−−−→ ΓMR −−−−→ Z

k −−−−→ 1
Does there exist a connected and simply connected solvable Lie group S(Γ)

containing ΓMR? Using Wang’s construction, Auslander constructed such a group
S(Γ) which fits the following commutative diagram

1 −−−−→ MR −−−−→ ΓMR −−−−→ Z
k −−−−→ 1

=

y y ∩
y

1 −−−−→ MR −−−−→ S(Γ) −−−−→ R
k −−−−→ 1

where Zk ⊂ Rk as a lattice. See [?] and [?]. Moreover, S(Γ) has the property that
there exists γ1, γ2, · · · , γk whose images form a set of generators for Γ/M which lie
on 1-parameter groups in S(Γ).

2.6.22(More properties of S(Γ)). (1) Γ ⊂ S(Γ) as a lattice.
(2) There exists a toral subgroup T ∗ of Aut(S(Γ)) such that S ⊂ S(Γ)oT ∗.

Moreover, S ↪→ S(Γ)oT ∗ → T ∗ is surjective.
(3) Let N be the nilradical of S; that is, the maximal normal nilpotent con-

nected Lie subgroup of S. Then ΓN can be naturally identified with
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ΓMR. With this identification, we have [S(Γ), S(Γ)] ⊂ ΓN , and hence
ΓN is normal in S(Γ).

(4) Any automorphism θ of ΓMR which is trivial on ΓMR/MR can be uniquely
extended to an automorphism of S(Γ).

(5) N is normal in S(Γ)oT ∗.

We shall study Seifert fiberings of infra-solvmanifolds. Suppose our model space
P itself is a connected, simply connected Lie group; G a connected closed normal
subgroup and W = P/G. We shall consider the short exact sequence of groups
1→ G→ P → W → 1 as a principal G-bundle. The group DiffG(P ) of all weakly
G-equivariant smooth diffeomorphisms of P onto itself is exactly the normalizer of
G = `(G) in Diff(P ), and is equal to TOPG(P ) ∩ Diff(P ). Let C(W,G∗) be the
group of all smooth maps from W to G. Suppose P → W has a smooth cross
section. Then we have a short exact sequence

1→ C(W,G)oInn(G)→ DiffG(P )→ Out(G)×Diff(W )→ 1.

The “affine group” Aff(P ) = PoAut(P ) acts on P by: (p, γ) · u = p · γ(u) for
(p, γ) ∈ Aff(P ) and u ∈ P . Note that P acts as left translations. For g ∈ G, we
have (p, γ)(g, 1)(p, γ)−1 = (pγ(g)p−1, 1). Let us denote the subgroup of Aut(P )
which leave G invariant by Aut(P,G). An important fact for us is

PoAut(P,G) ⊂ DiffG(P ) (∗)

This is true because DiffG(P ) is the normalizer of `(G) in Diff(P ), and `(G) is
normal in PoAut(P,G).

We go back to our solvable Lie groups. Since N is the nilradical of S, S/N is
commutative, say of dimension s. Therefore, we have an exact sequence of groups

1→ N → S → S/N = R
s → 1

On the other hand, since [S(Γ), S(Γ)] ⊂ ΓN from Property ?? (3) of S(Γ) and
[S(Γ), S(Γ)] is connected, we have [S(Γ), S(Γ)] ⊂ N . Therefore N is normal in
S(Γ) and S(Γ)/N is a commutative Lie group, Rs. Therefore

1→ N → S(Γ)→ S(Γ)/N = R
s → 1

is exact.
Since N is normal in both S and S(Γ), the inclusion maps ΓN ↪→ S and ΓN ↪→

S(Γ) induce Γ/Γ ∩N ↪→ S/N and Γ/Γ ∩N ↪→ S(Γ)/N . By these homomorphisms
we identify S/N = R

s with S(Γ)/N = R
s.

The group Π ⊂ S acts on S as left multiplications. Therefore, from (∗) we
have Π ⊂ DiffN (S). In fact, we have the following commutative diagram:

1 −−−−−−→ Π ∩N −−−−−−→ Π −−−−−−→ Π/(Π ∩N) −−−−−−→ 1y y y
1 −−−−−−→ C(Rs, N)oInn(N) −−−−−−→ DiffN (S) −−−−−−→ Out(N)× Diff(Rs) −−−−−−→ 1

Similarly, Π ⊂ S(Γ)oT ∗ ⊂ S(Γ)oAut(S(Γ), N), because N is normal in S(Γ)oT ∗.
S(Γ)oT ∗ acts on S(Γ) as affine maps which implies that Π ⊂ DiffN (S(Γ)) by (∗).
We have

1 −−−−−−→ Π ∩N −−−−−−→ Π −−−−−−→ Π/(Π ∩N) −−−−−−→ 1y y y
1 −−−−−−→ C(Rs, N)oInn(N) −−−−−−→ DiffN (S(Γ)) −−−−−−→ Out(N)× Diff(Rs) −−−−−−→ 1
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Let us denote Π/(Π ∩N) simply by Q. Then Q is a free abelian group of rank s,
where s = dim(S/N). Clearly, Γ/(Γ∩N) is a subgroup of Q of finite index, because
M ⊂ Γ (so, Π ∩N = Γ ∩N). We shall examine the two actions of Q on S/N and
S(Γ)/N .

The action of Q on S/N is induced by the left translation by Π on S. Therefore,
Q = Z

s acts on S/N = R
s also as left translations. Moreover, Q is a lattice in S/N .

Now the action of Q on S(Γ)/N is induced by the affine action of Π on S(Γ).
The projection S(Γ) → S(Γ)/N yields a homomorphism S(Γ)oAut(S(Γ), N) →
(S(Γ)/N)oAut(S(Γ)/N) naturally. We recall how S ⊂ S(Γ) · T ∗ of Property ??
(2) was constructed in [?]. S acts on ΓN by conjugation, which extends to an
automorphism of ΓMR. The latter is trivial on ΓMR/MR, and hence it can be
extended to an automorphism of S(Γ) by Property ?? (4). Since the S action
on ΓN/N is trivial, and ΓN/N = Z

s sits in Rs = S(Γ)/N as a uniform lattice,
the action of S on S(Γ)/N must be trivial as well. This implies that S ⊂ S(Γ) ·
T ∗ ⊂ S(Γ)oAut(S(Γ), N)→ (S(Γ)/N)oAut(S(Γ)/N) has image in S(Γ)/N ×{1}.
Therefore, Q = Z

s acts on S(Γ)/N = R
s as left translations. Moreover, Q is a

lattice S(Γ)/N . We conclude that both actions of Q = Π/Π ∩ N on S/N and
S(Γ)/N are as left translations.

Furthermore, z ∈ Π ∩ N goes into C(S/N,N)oInn(N) and
C(S(Γ)/N,N)oInn(N) as (z, µ(z)), as left translations, where µ(z) is the
conjugation by z so that µ(z)(a) = zaz−1. Actually, Π ∩ N ⊂ N sits in
C(Rs, N)oInn(N) as constant maps.

Choose an N -equivariant diffeomorphism τ : S → S(Γ). This can be done as
follows: Take smooth sections (not homomorphisms) s1 : Rs → S and s2 : Rs →
S(Γ). With these sections, we define an N -bundle equivalence τ : S → S(Γ) by
τ(x·s1(w)) = x·s2(w) for all x ∈ N and w ∈ Rs. Let us denote the representations of
Π into DiffN (S) and DiffN (S(Γ)) by ψ1, ψ2, respectively. More precisely, ψ1 : Π →
S ⊂ DiffN (S); and ψ2 : Π → S ⊂ S(Γ)oT ∗ ⊂ S(Γ)oAut(S(Γ), N) ⊂ DiffN (S(Γ)).
Since τ is N -equivariant, µ(τ) ◦ψ1 is a representation of Π into DiffN (S(Γ)). This
bundle map τ : S → S(Γ) induces an isomorphism f 7→ τ · f · τ−1 of DiffN (S) onto
DiffN (S(Γ)).

Consider the two representations µ(τ) ◦ ψ1, ψ2 : Π → DiffN (S(Γ)). Since they
induce the same maps of the kernel Π ∩ N into C(Rs, N)oInn(N), and of the
quotient Π/(Π ∩N) into Out(N)×Diff(Rs), we can now apply the uniqueness of
the Seifert Construction. We have commutative diagrams make “da” bigger

1 −−−−−−→ Π ∩N −−−−−−→ Π −−−−−−→ Π/(Π ∩N) −−−−−−→ 1y ψ2↓
yµ(τ)◦ψ1

y
1 −−−−−−→ C(Rs, N)oInn(N) −−−−−−→ DiffN (S(Γ)) −−−−−−→ Out(N)× Diff(Rs) −−−−−−→ 1

By [?, Theorem 2.3], there exists an element λ ∈ C(Rs, N) which conjugates ψ2 to
µ(τ) ◦ ψ1. Thus

Π
ψ1−−−−→ DiffN (S)

ψ2

y yµ(τ)

DiffN (S(Γ))
µ(λ)−−−−→ DiffN (S(Γ))
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is commutative. The map µ(τ−1 ◦ λ) sends ψ2(Π) to ψ1(Π) yielding a diffeomor-
phism from Π\S(Γ) onto Π\S. In this argument, the fact that N is a connected,
simply connected nilpotent Lie group is essential.

Now we show the space Π\S(Γ) admits a smooth maximal torus action. Let
Z(Π) = Z

k be the center of Π. Since M is the maximal normal nilpotent subgroup
of Π, Zk ⊂ M . Let Rk be the smallest connected subgroup of MR containing Zk.
Since Π commutes with Zk and Π ⊂ Aff(S(Γ)), Π commutes with (Zk)R = R

k.
This means that Rk lies in the centralizer of Π in DiffN (S(Γ)). Of course, Rk∩Π =
Z(Π). Thus we obtain an action of torus Rk/Zk on the model space Π\S(Γ). This
action is smooth, (actually, it is a group of isometries if we give a left invariant
metric on S(Γ)), and is a maximal torus action on Π\S(Γ). Now one can pull back
this action to a smooth action on Π\S. This completes the proof of Theorem. �

2.6.23 Corollary (Mostow). Let S1, S2 be two connected, simply connected solv-
able Lie groups. Let Γi be a lattice in Si, i = 1, 2. Suppose Γ1 is isomorphic to Γ2.
Then S1/Γ1 is diffeomorphic to S2/Γ2.

For Mostow’s argument, see [?, Theorem 3.6]. We give a different proof. Since
Γ1
∼= Γ2(= Π), construct a connected, simply connected solvable Lie group S(Γ)

on which these groups act. By Theorem ??, Si/Γi is diffeomorphic to S(Γ)/Π,
i = 1, 2. Therefore, S1/Γ1 is diffeomorphic to S2/Γ2.

The following example illustrates the construction employed in the proof of the
theorem. Moreover the example serves to illustrate why one is compelled to look
for a larger group than S if one wishes to construct a maximal torus action from
the descent of a vector subgroup.

2.6.24 Example. Let S = ˜E0(2) = R
2
oR be the universal covering group of the

2-dimensional Euclidean group, where (0, t) acts on R2 by x 7→ e2πitx, x seen as a
complex number. Let Π be the lattice generated by

t1 =
([

1
0

]
, 0
)
, t2 =

([
0
1

]
, 0
)
, α =

([
0
0

]
,

1
2

)
The subgroup Γ generated by t1, t2 and α2 is a characteristic subgroup of Π, iso-
morphic to Z3. Then S(Γ) = R

3 and we get an embedding of S into S(Γ)oS1 =
R

3
oSO(2) ⊂ R3

oO(3) = E(3). The homomorphism is obvious:([
x1

x2

]
, t

)
7→

x1

x2

t

 ,
 cos 2πt sin 2πt 0
− sin 2πt cos 2πt 0

0 0 1


The image of Π in E(3) is the orientable Bieberbach group of dimension 3 with
holonomy group Z2. Clearly the manifold Π\R2

oR is diffeomorphic to the flat
manifold Π\R3. On Π\R3, there is a maximal torus action by S1, generated by
the left translation by R = {[0 0 s]t : s ∈ R}. Note that this subgroup R of S(Γ) is
not in the image of S. This means that there is no S1-action on Π\S coming from
the left translation. In fact, it comes from the right translation by the R-factor of
S = R

2
oR.
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If we consider just the subgroup Γ, it is even clearer what the theorem says.
The solvmanifold Γ\R2

oR is diffeomorphic to the torus Γ\R3. On the latter torus,
there is a standard T 3-action as translations. However, no vector subgroup in S
descends to give a maximal torus action on Γ\R2

oR.

We now turn to general Lie groups. Little is known for the existence of a
maximal torus action on general double coset spaces. Under some strong conditions,
we can show a double coset space of a Lie group which is aspherical admits a
maximal torus action.

2.6.25 Theorem. Let G be a connected simply connected Lie group, R its radi-
cal. Suppose S = G/R does not contain any normal compact factor. Let K be a
maximal compact subgroup of G and Γ a torsion free cocompact lattice in G such
that (Γ ∩ R,R) has the unique automorphism extension property. If exp : R → R
is surjective, then the double coset space Γ\G/K admits a smooth maximal torus
action.

Proof. Let G = RoS be the Levi-decomposition of G. Let A = {a ∈ R|(a, u) ∈
Z(Γ) for some u ∈ S}. Let (a, u) ∈ Z(Γ). Then for any (z, 1) ∈ ΓR = Γ ∩ R,
(z, 1)(a, u) = (a, u)(z, 1). This implies that uz = a−1za. Since (Γ ∩ R,R) has the
unique automorphism extension property, the two automorphisms u and µ(a−1)
induce the same automorphisms on R. Therefore, ux = a−1xa for all x ∈ R.
Moreover, for any (b, v) ∈ Γ, we have va = a. Now it is easy to see that A is a
commutative subgroup of R.

Choose generators (ai, ui), i = 1, 2, · · · , k for Z(Γ). We define a homomorphism
φR : Rk → R as follows: Since exp : R → R is onto, log is defined on R. Let Ai =
log ai. Then φR is the composite Rk → R exp−→→ R, where the first map is the linear
transformation from R

k to R sending the standard basis to A1, A2, · · · , Ak. Since
[Ai, Aj ] = 0, the image of Rk in R is a commutative Lie subalgebra, and hence the
exponential map restricted to this subalgebra is a homomorphism. Consequently,
φR is a homomorphism.

Next, we define φS : Rk → S as follows: Let S = S1 × S2 × · · · × Sr, where
each Si is a simple group. For each i, let S∗i denote the adjoint form of Si, and
choose a maximal compact subgroup of S∗i . This maximal compact subgroup is of
the form either S1 ×H or H, where H does not have a circle factor, depending on
whether Si has infinite center or not. This determines a subgroup Rεi × H̃i ⊂ Si,
where H̃i is compact, and εi = 1 or 0, depending on whether Si has infinite center
or not. In the former case, R contains the infinite summand of the center of Si.
Then K = ΠH̃i is a maximal compact subgroup of S.

Consider the map Z(Γ)→ Π(Rεi × H̃i)→ ΠRεi ⊂ ΠSi, where Π(Rεi × H̃i)→
ΠRεi is a projection. We extend this to a homomorphism φS : Rk → ΠRεi ⊂ S.
Note that φS(Z(Γ)) differs from p(Z(Γ)) by elements in ΠH̃i ⊂ K.

Note that K commutes with Rε1 × Rε2 × · · · × Rεr . Thus we have an induced
action of Rk on G/K. The action of Rk on G/K will not be effective in general,
because Z(Γ)→ ΠRεi ⊂ S may have a non-trivial kernel. Even though the actions
by Zk ⊂ Rk and by Z(Γ) are different on S, they induce the same one over S/K.
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A desired action of Rk on G/K = R · S/K is then given by

φ(t)(x,w) = (x · φR(t), w · φS(t)).

Since Γ acts on G as left multiplications, it commutes with the Rk action defined
above. Moreover, we have Rk∩Γ = Z(Γ) on G/K. Consequently, we have obtained
a smooth action of T k = Z(Γ)\Rk on Γ\G/K. �

2.6.26 Theorem ([?]). Let G be a connected, simply connected Lie group without
any normal compact factors in its semi-simple part. Let Γ be a torsion free cocom-
pact lattice and K be a maximal compact subgroup of G. Then there is a smooth
manifold M , which is homotopy equivalent to the double coset space Γ\G/K, ad-
mitting a smooth maximal torus action.

Proof. We may assume that Γ = π1(Γ\G/K). Let R be the radical of G. Then
G = RoS. Let p : G → S be the projection; and let Z(Γ) denote the center
of Γ. Let Γ̃ = ΓR · Z(Γ), where ΓR = Γ ∩ R. It is poly {cyclic or finite} since
1 → ΓR → ΓR · Z(Γ) → p(Z(Γ)) → 1 is exact, ΓR is a lattice of R and p(Z(Γ))
is a finitely generated abelian group. Such a group Γ̃ contains a characteristic
subgroup Γ′ of finite index which is a Mostow-Wang group (see Definition ??),
with nΓ′ = ñΓ, where n() denotes the discrete nilradical of (). Now Γ̃ contains a
characteristic subgroup Γ̂ of finite index which is predivisible and n̂Γ = nΓ′. This
implies that Γ̂/ n̂Γ is free abelian, say Zm.

Let Q = Γ/Γ̂ and S∗ = S/p(Z(Γ)). Note that S∗ is not necessarily the adjoint
form of S. Let K∗ be a maximal compact subgroup of S∗. Note that K∗ is a finite
quotient of T ×K, where T is a torus generated by free abelian factors of p(Z(Γ)).
Now Γ/Γ̃ = Γ/ΓR ·Z(Γ) acts on S∗/K∗ with compact quotient. Therefore Q = Γ/Γ̂
acts on S∗/K∗ with compact quotient via the homomorphism Γ/Γ̂→ Γ/Γ̃. Let us
denote n̂Γ by ∆. Since n̂Γ is characteristic in Γ̂, it is normal in Γ. Consider the
exact sequences 1 → ∆ → Γ → Γ/∆ → 1 and 1 → Z

m → Γ/∆ → Q → 1. We
get the latter exact sequence from the fact that Γ̂ is predivisible. We do the Seifert
space construction with the latter exact sequence and the action of Q on the space
S∗/K∗ to obtain an action of Γ/∆ on Rm × S∗/K∗. Now we do a Seifert space
construction with the first exact sequence and the action of Γ/∆ on Rm × S∗/K∗.
Consequently we obtain an action of Γ on ∆R×Rm×S∗/K∗. Let Zk be the center
of Γ. It lies in the center of ∆. Since the center of ∆ lies in the center of ∆R, there
is a unique subgroup Rk in the center of ∆R containing Zk as a uniform lattice.
The action of Rk on ∆R × Rm × S∗/K∗, by left multiplication on the first factor,
commutes with the action of Γ. Therefore, it induces an action of torus Rk/Zk on
M . Clearly, this is a smooth maximal torus action. �

2.6.27 Remark. In [?], Farrell and Jones show that any closed manifold Mn ho-
motopically equivalent to Γ\G/K, is homeomorphic to it provided G has a faithful
representation into GL(m,R) for some m, n 6= 3, 4 Thus when G ,in the theorem
above, has a faithful linear representation then Γ\G/K has a maximal torus action.
Of course there are simply connected G without faithful representations.
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Check Γ\G/K section





CHAPTER 3

b-hattori: Hattori

Hattori-Yoshida’s theorem for Q connected: 5-17-99, revised 6-1-99, 8-22-2000

Comment from Frank to Kyung
I have repeatedly said that H-Y works for Q locally compact Lie group. For

this to truely work, one needs to have

H∗(Q; M(W,Rk)) = 0

in lower dimensions.
Mostow explicitly proves this for Q compact. I can’t figure out if it holds for

Q locally compact. Graham Segal has a very categorical approach and I can’t pen-
etrate enough of it to see if the vanishing result there works for Q locally compact.
[Of course it works for Q discrete and we have proofs when W/Q is compact, or
paracompact Q\W finite dimensional (and we will give the general case when Q\W
is paracompact when we introduce a bit of sheaf theory. Segal uses sheaf theory
too)].

So I have restricted the H-Y stuff to Q compact, connected Lie group and W
being a connected, locally compact Hausdorff space.

The use of W being locally compact is to guarantee that M(W,T k) is an abelian
topological subgroup of TOP0

Tk(P ). I guess they want it that way because the
vanishing theorem is proved with the C-topology. (It may be also true for W say,
paracompact, and using the point-open topology [TOP(W ) is a topological group
in the point-open topology without W being locally compact]. In fact, Mostow’s
first part is for general topological groups and using point-open topology–it is only
in the later sections that he restricts to locally compact and CO-topology).

I can’t figure out why they want to use CW-structure of W . It never comes
in explicitly and may be hidden in the parts that they leave out– such as their
claim (without proof) of naturality of the obstruction class– but is seems that
naturality of the obstruction class never uses CW-structure– the argument I give
does not need CW-structure of W . Also, perhaps they are using it implicitly in
H2(W ;Zk) = [W,BTk ]; i.e., in the classification of principal bundles– which in
the 1970’s many topologists still didn’t understand that the classification works for
paracompact spaces – using Cech cohomology.

3.1. Lifting Q actions — Q discrete

3.1.1. Let G be a Lie group, and P → W be a principal G-bundle. If Q acts on
P as a group of principal G-bundle automorphisms, then the projection onto W
introduces a Q-action on W . Conversely, we can take a Q-action on W and search
for conditions that will allow us to lift Q to a group of bundle automorphisms of

87
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Q-lifting
weak Q-liftings

P . That is, we seek a Q-action on P that commutes with the left G-action and
projects onto the given Q-action on W . We shall call such a Q-action a Q-lifting
of (Q,W ).

3.1.2. We have discussed previously this lifting problem when Q is a discrete group
acting properly on W and G = T k, a k-torus. In this case, the problem was solved
even for more general lifting Q-actions to weak bundle automorphisms. This work
was put into a final form in [?] where it was discussed in conjunction with holomor-
phic Seifert fiberings. The topological Q-lifting problem for general compact groups
Q and toral G, has had a distinguished history, Stewart, J.C. Su, Hattori-Yoshida,
Gottlieb, Lashof, May and G.B. Segal, among others. P. E. Conner (Lectures on
the action of a finite group, SLN 73(1968)) and [?] and [?].

♣
References

We shall review the discrete case first so that the analogy between the discrete
and connected case becomes more clear.

3.1.3. Let ψ : Q → Aut(Zk) = Aut(T k) ⊂ Aut(Rk), and let Q be discrete and act
properly on W . As seen in section XXX ,

♣
the Ep,q2 spectral sequence gave rise tosection number

an exact sequence:

0→ H2
ψ(Q;Zk) i−→ H2(Q; Zk)

j−→ H2(W ;Zk)Q δ−→ H3
ψ(Q;Zk)→ H3(Q; Zk),

if H1(W ;Zk) = 0. This exact sequence encodes the information on liftings and
Seifert fiberings.

H2(Q; Zk) is naturally isomorphic to H1(Q; Tk), which is the group of equiv-
alence classes of coordinate principal T k-bundles

♣
over W admitting a Q-actioncoordinate principal

bundle? normalizing the translational T k-action according to ψ.
♣

The homomorphism j
unclear assigns to a coordinate T k-bundle with Q-action, the characteristic class of the T k-

bundle over W . The elements not in the kernel of δ are the equivalence classes of
the weakly Q-invariant T k-bundles over W which do not have a lifting of Q to a
group of weak bundle equivalences, called weak Q-liftings. The kernel of j, which
is equal to the image of i, is the Q-actions on T k ×W up to T koψQ equivalence.
An action of Q on T k × W lifts to an action of Π on Rk × W and normalizes
the Rk-action. This group Π is an extension of Zk by Q and is represented by its
cohomology class in H2

ψ(Q;Zk). [Later we see that this is also the equivalence class
of different Q-liftings to T k ×W . It will be isomorphic to H1(Q; M(W,T k)).]

It was also shown that H2(Q; Zk) is naturally isomorphic to H2
ψ(WQ;Zk) where

WQ is the Borel space EQ×QW of the Q-action on W . The subscript ψ denotes
twisted coefficients Zk if ψ is not trivial.

If ψ is trivial, H2(WQ;Zk) is just the characteristic classes representing the
equivalence classes of principal T k-bundles over WQ. The homomorphism j is
(π ◦ i)∗, where i : W ↪→ EQ×W is given by i(w) = (e0, w), for some fixed e0 ∈ EQ
and π : EQ ×W → EQ ×Q W = WQ is the orbit mapping under the diagonal
Q-action. Therefore those principal T k-bundles over W which have a Q-lifting are
identical with those bundles over W which are equivalent to pullback from WQ via
(π ◦ i)∗. Note these bundles must be invariant under Q. That is, q∗(P ) = P , for
q ∈ Q. This is the same as saying that [P ] ∈ H2(W ;Zk)Q. The non-zero elements
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$“call˙Q(W)$
$“cale˙G(W˙Q)$

of the image of δ can be regarded as the obstruction to a Q-lifting on a Q-invariant
T k-bundle over W .

3.2. Lifting Q actions — Q connected

3.2.1. It is of interest to obtain results similar to those in section ?? for connected
Lie groups instead of discrete groups. We will present the results of Hattori-Yoshida
for connected Lie groups Q and principal toral bundles. First, we shall make some
general comments on Q-liftings.

Let Q be a Lie group, and ϕ : Q×W →W be a proper action. Since Q has a
topology, we shall assume, for convenience, that W is locally compact, Hausdorff,
connected and locally connected. Then TOP(W ) is a topological group under the
compact-open topology and ϕ̃ : Q → TOP(W ) is a homomorphism of topological
groups and ϕ̃(Q) is a closed (since the action is proper) subgroup of TOP(W ). The
topology of ϕ̃(Q) is the Lie group topology of Q/Q0, where Q0 is the kernel of ϕ̃.
(See section 1.2.6).

♣
We shall repeatedly use the following Ref number?

3.2.2 Lemma. Let f : X → Y and p : Z → Y be Q-maps between Q-spaces.
Then the pullback f∗(Z) has an induced Q-action and the maps in the induced
commutative diagram

f∗(Z)
f̃−−−−→ Z

p∗
y yp
X

f−−−−→ Y
are Q-maps. Moreover, if f and p are also G-maps with the action of G and
Q commuting, then the induced maps are also G-maps and the induced actions
commute.

Proof. Recall that

f∗(Z) = {(x, z) ∈ X × Z | f(x) = p(z)}.
Let (x, z) ∈ f∗(Z). Define q ·(x, z) = (qx, qz) for all q ∈ Q and (x, z) ∈ f∗(Z). This
gives a well-defined Q-action and makes the induced maps Q-equivariant. The rest
of the lemma follows easily. �

3.2.3 Exercise. If f : P ′ → P is a G-bundle equivalence and if P ′ has a Q-lifting
(resp., weak Q-lifting), then so does P .

3.2.4. Let Q and G be Lie groups, Q acting on W properly, let LQ(W )
♣

denote the No G in this nota-
tion!equivalence classes of principal G-bundles over W which admit Q-liftings. Denote

by EG(WQ) be the equivalence classes of principal G-bundles over the Borel space
WQ = EQ×QW . Embed W into WQ via the map π ◦ i : W →WQ, where

i : W → EQ×W, i(w) = (e0, w), for some fixed e0 ∈ EQ,
π : EQ×W → EQ×QW, the natural projection.

This embeds W as the fiber over the image of e0 in BQ, the classifying space for
the principal Q-bundles, and W →WQ → BQ is a bundle.
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$“cale˙G(W;W˙Q)$ Let EG(W ;WQ) be the equivalence classes of principal G-bundles over W that
have a representative which is the pullback of a principal G-bundle over WQ. In
other words, EG(W ;WQ) = i∗ ◦ π∗(EG(WQ)).

3.2.5 Proposition. LQ(W ) ⊆ EG(W ;WQ).

Proof. Suppose the principal G-bundle P has a Q-lifting over W . Then π2 :
EQ×W →W is a Q-map, and if we take the trivial G-actions on EQ×W and W ,
π2 is also a G-map and commutes with the Q-actions. The projection p : P → W
is also a G- and Q-map with the G and Q actions commuting. Then by Lemma
??, π∗2(P ), a principal G-bundle over EQ×W , has induced commuting G- and Q-
actions. Both actions are free and proper. Form the commuting diagram of orbit
mappings

π∗2(P )
Q\−−−−→ Q\π∗2(P )

G\
y yG\

EQ×W π−−−−→
Q\

EQ×QW

yielding Q\π∗2(P ) a principal G-bundle over WQ. Clearly, π∗(Q\π∗2(P )) = π∗2(P ).
Now i∗(π∗2(P )) ∼= P , hence i∗ ◦ π∗(Q\π∗2(P )) ∼= P . �

3.2.6. Under what conditions is LQ(W ) = EG(W ;WQ)? When G = T k and Q is
compact, this was first shown to hold by Hattori-Yoshida, and generalized earlier
results of Stewart and Su. However, Gottlieb gave an example, attributed to Bre-
don, that equality fails for G = Sp(1), citeXXX .

♣
The following is also observedref

by Gottlieb.

3.2.7 Proposition. If Q acts freely on W , then LQ(W ) = EG(W ;WQ).

Consider the diagram of maps
♣

Two backward ar-
rows needed.

W
i−−−−→
π2

EQ×W

π

y yπ
Q\W i−−−−→

π2
EQ×QW

We have π ◦ i = i ◦ π and π2 ◦ π = π ◦ π2 and all the horizontal maps i, π2, i, π2 are
homotopy equivalences. [Since Q acts freely, π2 is a fiber bundle map with fiber
EQ so that π2 is a homotopy equivalence]. For a map f : WQ = EQ×QW → BG,
define f : Q\W → BG by f = f ◦ i. Then we have f ◦ π ' f ◦ π ◦ i. Thus if
P ∈ i∗ ◦ π∗(EG(WQ)) = EG(W ;WQ), then P ∼= R = π∗ ◦ f∗(ξ), with ξ being the
universal G-bundle over BG. Since f ◦π is a Q-map, the pullback R of the universal
G-bundle has G×Q action lifting the Q action on W . Since R ∼= P , we have shown
what we wanted to prove. [We can define a Q-lifting to P via h : R → P , the
G-bundle equivalence by setting q ◦h(r) = h(q(r)). One can also use Exercise ??.]
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pseudo-lifting3.3. Lifting Q actions — Q = T k

3.3.1 . We will now explain the argument of Hattori-Yoshida in the case when
G = T k, and Q and W are connected and Q is compact. Their argument treats Q
compact and not necessarily connected, citeXXX . By different methods, Lashof,
May and Segal [?]

♣
treat the same Q with G compact abelian. ref.

In the discrete case, the proof relied on the cohomology of Q. In the continuous
case, the continuous cohomology of Q will be used. The cohomology groups are
defined analogously as in the discrete case but maps

Qq = Q× · · · ×Q −→ A,

where A is a topological abelian Q-module, are taken continuously. Both methods,
discrete and continuous, rely on the vanishing of certain cohomology groups when
the coefficients are taken in the maps of W into Rk. In both cases, this is a non-
trivial fact and, in the continuous case, was first proved by G.D. Mostow citexxx .

Since we are only considering lifting Q actions to bundle automorphisms, we
can simplify our universal group TOPTk(P ) to

TOP0
Tk(P ) = {f ∈ TOPTk(P ) : f(au) = af(u)}.

Then the sequence

0→ M(W,T k)→ TOP0
Tk(P )

ρ−→ TOP(W )

is exact. If ϕ̃(Q) = Q′ denotes the image of Q in TOP(W ), we may consider the
induced exact sequence

0 −→ M(W,T k) −→ ρ−1(ϕ̃(Q)
ρ−→ ϕ̃(Q) −→ 1.

That the image of ρ contains ϕ̃(Q) follows from the fact that ϕ̃(Q) is in the con-
nected path component of the identity of TOP(W ), see (chapter 4).

♣
We want to Ref.

describe the extension in terms of factor sets. This is, in general, not possible, for
to do so we need a continuous map ψ : Q → TOP0

Tk(P ) so that ρ ◦ ψ = ϕ̃. So
we search for a condition that guarantees that such a ψ exists (In [?], ψ is called a
pseudo-lifting).

3.3.2 Lemma ([?, Lemma 2.3]). If P ∈ ETk(W ;WQ), then there is a continuous
ψ : Q→ TOP0

Tk(P ) with ϕ̃ = ρ ◦ ψ.

Proof. Since the equivalence class of P is an element of ETk(W ;WQ), there is a
principal T k-bundle S over WQ so that P ∼= i∗π∗(S). In particular, π∗2(P ) ∼= π∗(S)
over EQ × W , and we may identify P with π∗S|e0×W . There is a contraction
rt : EQ → EQ such that r0 = e0, and r1 is the identity. Consequently there is a
covering homotopy

rt : π∗S −→ π∗S

of rt × 1 : EQ ×W → EQ ×W so that r1 is the identity and r0 maps π∗S into
π∗S|e0×W = P .

Consider the composite map

Q× P ⊂ Q× π∗S −→ π∗(S) r0−→ P,
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which covers the ϕ : Q×W →W action. (The Q action on π∗(S) is induced from
the fact that the classifying map of π∗(S) is a Q-map and where the action of Q
on BTk is taken as trivial). Thus each q ∈ Q is an automorphism of P and we get
a continuous map ψ : Q→ TOP0

Tk(P ) with ϕ̃ = ρ ◦ ψ. �

3.3.3. 08-22-2000 We are now, with the help of Lemma ??, ready to characterize
our group extension

0 −→ M(W,T k) −→ ρ∗(ρ−1(ϕ̃(Q))) −→ Q −→ 1 (3.3–1)

which is the pullback of the group extension

0 −→ M(W,T k) −→ ρ−1(ϕ̃(Q))
ρ−→ ϕ̃(Q) −→ 1

in terms of a factor set or 2-cocycle. We assume that the Q-action on W has a
pseudo-lifting ψ.

S. T. Hu, Cohomology theory in topological groups, Mich. Math. J. We de-
fine

f(α, β) = ψ(β)ψ(α)ψ(αβ)−1,

as our 2-cocycle. Its value is in M(W,T k) with M(W,T k) a left Q-module in the
usual sense; namely,

α · λ = λ ◦ ψ(α)−1

for λ ∈ M(W,T k) and α ∈ Q. Then our cocycle is in M(Q × Q; M(W,T k)) =
M(Q2; M(W,T k)) = C2(Q; M(W,T k)). Its cohomology class is denoted by o(P )
and it is the obstruction for splitting. The class o(P ) vanishes if and only if the
sequence (??) splits; that is, whenever P has a Q-lifting. What will be shown is
that

3.3.4 Theorem ([?]). H2(Q; M(W,T k)) = 0.

3.3.5 Corollary. LQ(W ) = ETk(W ;WQ).

3.3.6. 08-22-2000 First let us recall some facts about the cohomology of topological
groups with coefficients in the abelian topological group, (see Hu, Mostow).

Let Q and A be tiopological groups with A abelian. Define the Q-module of
continuous p-cochains of Q into A by Cp(Q;A) = M(Qp, A) for q > 0. That is,
continuous maps of Qp = Q×Q× · · · ×Q, the cartesian product of p copies of Q,
into the abelian topological group A. These maps forms a group where addition of
maps is given by addition of functional values. We assume that Q acts on A as a
group of transformations and so this extends to an action on Cp(Q;A). We define
C0(Q;A) = A For each p ≥ 0, we define the inhomogeneous coboundary operation

δp : Cp(Q;A) −→ Cp+1(Q;A)

which will satisfy δp+1δp = 0. For p = 0, δ0 : C0(Q;A) = A −→ C1(Q;A) =
M(Q,A) is given by

δ0a(x) = x · a− a
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for x ∈ Q, a ∈ A. For p > 0,

δpf(x1, · · · , xp+1) = x1 · f(x2, · · · , xp+1) + · · ·
+
∑i=p
i=0(−1)if(x1, · · · , xixi+1, · · · , xp+1)

+(−1)p+1f(x1, · · · , xp).

Define Hp(Q;A) = ker(δp)/image(δp−1). Then Hp has the obvious functorial prop-
erties. Clearly, if Q is discrete, this continuous cohomology is the same as the ordi-
nary cohomology of the discrete group Q with coefficients in the group A because
every map from Q is continuous.

Our definition of coboundary differes slightly from that of Hattori-Yoshida be-
cause we require Q to act on M(Q,A) as a left action instead of their right action.
This is consitent with our preceeding chapters.

If 0 → A′
i→ A

i→ A′′ → 0 is an exact sequence of abelian topological Q-
modules, then

0 −−−−→ Cp(Q;A′) i∗−−−−→ Cp(Q;A)
j∗−−−−→ Cp(Q;A′′)

is exact but, unfortunately, the last homomorphism is not necessarily onto. owever,
it A′′ admits a continuous cross-section in A, then j∗ : Cp(Q;A) → Cp(Q;A′′) is
surjective as a cochain map. Consequently, under this restriction, we get a long
exact sequence of cohomology. This differs from the discrete case since there a cross-
section always exists because all maps from a discrete Q are continuous. This point
is serious one and the general lack of exactness makse calculations of continuous
cohomology difficult.

If W is lcoally compact Hausdorff space, M(W,Rk) and M(W,T k) are abelian
topological groups. We will eventually need the vanishing theorem of Mostow:

3.3.7 Proposition (Mostow). If Q is a compact Lie group, and W is a locally
compact Hausdorff space, Hp(Q; M(W,Rk)) = 0 for all p ≥ 1.

3.3.8(Proof of the Theorem ??). From the exact sequence of abelian groups

0 −→ M(W,Zk) −→ M(W,Rk)
exp−→ M(W,T k) −→ H1(W ;Zk) −→ 0,

we obtain the following exact sequences

0 −→ M(W,Zk) −→ M(W,Rk)
exp−→ M0(W,T k) −→ 0,

and
0 −→ M0(W,T k) −→ M(W,T k) −→ H1(W ;Zk) −→ 0,

where M0(W,T k) is the subgroup of maps of W into T k which are homotopic to
a constant. Since W is connected, M(W,Zk) ∼= Z

k and M(W,Rk) is the universal
covering of M0(W,T k). Also M(W,Rk) is contractible and M0(W,T k) is a K(Zk, 1).
These are all Q-modules and so we have resulting cochain complexes:

0 −→ C∗(Q; M0(W,T k)) −→ C∗(Q; M(W,T k)) −→ C∗(Q;H1(W ;Zk)).

In the last term, H1(W ;Zk) is discrete and therefore the last homomorphism is
onto. In particular, we have

Hp(Q; M0(W,T k)) ∼= Hp(Q; M(W,T k)), for q ≥ 2
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[we are using that Hp(Q; discrete) = 0 for q ≥ 1, when Q is connected] and

0 −→ M0(W,T k)Q −→ M(W,T k)Q −→ H1(W ;Zk)

−→ H1(Q; M0(W,T k)) −→ H1(Q; M(W,T k)) −→ 0
(3.3–2)

is exact.

It remains to show H2(Q; M0(W,T k)) = 0. The cochain complex

0 −→ C∗(Q;Zk) −→ C∗(Q; M(W,Rk)) −→ C∗(Q; M0(W,T k))

is exact but the last homomorphism is not onto. If

f ∈ Cp(Q; M0(W,T k)) def.= M(Qp,M0(W,T k)),

the space of all continuous maps of Qp into M0(W,T k), then f is the image of an
element of C(Qp; M(W,Rk)) if and only if f : Qp → M0(W,T k) is trivial on π1.
[M(W,Rk) is the contractible universal covering of M0(W,T k), and M0(W,T k) is
a K(Zk, 1).] Therefore, we can assign to f the homomorphism f∗ : π1(Qp) → Z

k.
We need not concern ourselves with base points as all our groups are abelian and
Qp is simple. Thus,

M(Qp,M0(W,T k)) −→ Hom(π1(Gp),Zk)

is onto. This particular map is a cochain mapping:
Recall

∂j : Qp+1 −→ Qp, j = 0, 1, · · · , p+ 1

is defined by

∂0(u1, · · · , up+1) = (u2, u3, · · · , up+1)

∂i(u1, · · · , up+1) = (u1, · · · , ui · ui+1, · · · , up+1), 1 ≤ i ≤ p
∂p+1(u1, · · · , up+1) = (u1, u2, · · · , up).

Induced is ∂i∗ : π1(Gp+1)→ π1(Gp). The coboundary map is given by

δ = Σp+1
i=0 (−1)iδi

where δi is the transpose of ∂i, 0 < i ≤ p + 1 and where δ′0 is the transpose of
∂0 together with the composition of the operation by the element of Q in the first
factor of Qp+1. This operation becomes trivial on the homotopy level and so we
have (δf)∗ = δf∗. Thus we get the following exact sequence of cochain complexes

0 −→ C∗(Q;Zk) −→ C∗(Q; M(W,Rk)) −→ C∗(Q; M0(W,T k)) −→ Hom∗(π1(Q),Zk) −→ 0,

where the p-cochains of Hom∗(π1(Q),Zk) are given by Homp(π1(Q),Zk) defn=
Hom(π1(Qp),Zk). We define Hom0(π1(Q),Zk) = 0. Then,

C0(Q; M0(W,T k)) = M0(W,T k) δ0

−→ C1(Q; M0(W,T k))
−→ Hom1(π1(Q),Zk) = Hom(π1(Q),Zk)

is the trivial homomorphism ensuring that C∗(Q; M0(W,T k)) −→ Hom∗(π1(Q),Zk)

is a cochain mapping at the 0 and 1-level. HY does not have H0 and H1.
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Let K∗ denote the image of C∗(Q; M(W,Rk))
exp∗−→ C∗(Q; M0(W,T k)). Then

we have two short exact sequences

0 −→ C∗(Q;Zk) −→ C∗(Q; M(W,Rk)) −→ K∗ −→ 0

0 −→ K∗ −→ C∗(Q; M0(W,T k)) −→ Hom∗(π1(Q),Zk) −→ 0.

Passing the first exact sequence to cohomology, we get the long exact sequence

−→ Hp(Q;Zk) −→ Hp(Q; M(W,Rk)) −→ Hp(Q;K∗) −→ Hp+1(Q;Zk) −→,

Now Hp(Q;Zk) = 0 for p > 0 since Q is connected, so Hp(Q; M(W,Rk)) ∼=
Hp(Q;K∗), for p ≥ 1. But Hp(Q; M(W,Rk)) = 0 for all p ≥ 1 [Mostow]

♣
so ref

that Hp(Q;K∗) = 0 for all p ≥ 1.
Passing the second exact sequence to cohomology, we get the long exact se-

quence

−→ Hp(Q;K∗) −→ Hp(Q; M0(W,T k)) −→ Hp(Hom∗(π1(Q),Zk)) −→ Hp+1(Q;K∗) −→ .

Since Hp(Q;K∗) = 0 for all p ≥ 1,

Hp(Q; M0(W,T k)) ∼= Hp(Hom∗(π1(Q),Zk))

for p ≥ 1.
We now calculate Hp(Q; M0(W,T k)) for p ≤ 2. This reduces to computing

Hp(Hom∗(π1(Q),Zk)) for p = 1 and 2. Now Hom1(π1(Q),Zk) = Hom(π1(Q),Zk).
If f is a 1-cochain, then

δf(α, β) = f∂0∗(α, β)− f∂1∗(α, β) + f∂2∗(α, β)

= f(β)− f(α+ β) + f(α)

since ∂1(α, β) = αβ induces the addition in π1(Q). However, f ∈ Hom(π1(Q),Zk),
hence δf(α, β) = 0. Since Hom0(π1(Q),Zk) = 0,

H1(Hom∗(π1(Q),Zk)) = Hom(π1(Q),Zk).

Similarly, for f ∈ Hom2(π1(Q),Zk) = Hom(π1(Q2),Zk), we have

δf(α, β, γ) = f(β, γ)− f(α+ β, γ) + f(α, β + γ)− f(α, β)

= f(β, γ)− f(β, γ)− f(α, 0) + f(α, β) + f(0, γ)− f(α, β)

= f(0, γ)− f(α, 0)

= f(−α, γ).

Thus if δf = 0, then f = 0. Therefore,

H2(Hom∗(π1(Q),Zk) = 0.

This completes the proof of the theorem. The corollary also follows since any
element of ETk(W ;WQ) has a pseudo Q-lifting and its obstruction o(P ) will now
vanish.
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3.3.9. Because LQ(W ) = i∗ ◦π∗EG(WQ), the characteristic class of P , c1(P ), lies in
the image of i∗ ◦ π∗ : H2(WQ;Zk) → H2(W ;Zk), if and only if, P has a Q-lifting.
Therefore we may take the spectral sequence of the fibering WQ → BQ, where
Ep,q2 = Hp(BQ;Hp(W ;Zk)). Consequently,

3.3.10 Proposition. When H1(W ;Zk) = 0, we get the complete analogue of the
exact sequence of section ??; namely,

0→ H2(BQ;Zk)
`−→ H2(WQ;Zk)

j−→ H2(W ;Zk)Q −→ H3(BQ;Zk)→ H3(WQ;Zk).

Notice that H2(W ;Zk)Q = H2(W ;Zk) as Q is connected. We may interpret each
of these terms analogous to those in section ??.

Proof. Using Corollary ??, LQ(W ) = ETk(W ;WQ), we consider the fibering
EQ ×Q W = WQ → BQ, where W is the fiber and structure group is Q.
Since Q is connected, the coefficient system in the Ep,q2 = Hp(BQ;Hp(W ;Zk))
is simple (i.e., not twisted) and the sequence converges to H∗(WQ;Zk). In di-
mension 2, we have H2(WQ;Zk) = [WQ, BTk ] and the edge homomorphism

H2(WQ;Zk)
j−→ H2(W ;Zk) coincides with i∗ ◦ π∗ : H2(WQ;Zk) → H2(W ;Zk).

We obtain the terms of low degree for this spectral sequence

0→ H1(BQ;Zk) −→ H1(WQ;Zk) −→ H1(W ;Zk) −→ H2(BQ;Zk)→ H2(WQ;Zk).

If H1(W ;Zk) = 0, the exact sequence continues with

0→ H2(BQ;Zk) −→ H2(WQ;Zk) −→ H2(W ;Zk) −→ H3(BQ;Zk)→ H3(WQ;Zk).

Therefore the elements c1(P ) ∈ H2(W ;Zk) which are the characteristic classes of
the bundles in LQ(W ) are precisely the image of j. For each such P , the group
H2(BQ;Zk) classifies the distinct Q-liftings to P . In particular, it classifies the
Q-liftings for the product bundle. �

If H1(W ;Zk) 6= 0, then using the spectral sequence again, we may char-
acterize the image of j (and hence the elements of LQ(W )) as those elements
c ∈ H2(W ;Zk) = E0,2

2 such that d2(c) = 0 and d3(c) = 0. [Here, d3 : E0,2
3 (=

kernel d2) −→ E3,0
3 = H3(BQ;Zk) since BQ is simply connected.]

Also, note that H2(BQ;Zk) is naturally isomorphic to Hom(π1(Q),Zk). For
H2(BQ;Zk) ∼= Hom(H2(BQ),Zk) since BQ is simply connected and H2(BQ) ∼=
π2(BQ) ∼= π1(Q).

3.3.11. We have the following corollaries.

Corollary 1(cf [?, ?]). If Q is a simply connected, compact Lie group acting
properly on W , then any principal T k-bundle over W has a Q-lifting. Furthermore,
this lifting is unique up to conjugation by elements of M(W,T k).
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Proof. The map H2(WQ;Zk)
j−→ H2(W ;Zk) arises from the edge homomorphism

in the spectral sequence associated with the fibering WQ → BQ. But as π1(Q) =
π2(Q) = 0, BQ is 3-connected and soHp(BQ,Hq(W ;Zk)) = Ep,q2 is 0 for p = 1, 2, 3.

This implies that H1(W ;Zk) ∼= H1(WQ;Zk) and H2(WQ;Zk)
j−→ H2(W ;Zk) is

an isomorphism and so each principal T k-bundle has a Q-lifting
Just as in the discrete case, the Q-liftings are in 1− 1 correspondence with the

group H1(Q,M(W,T k)) up to conjugation by elements of M(W,T k)). From the
proof of the theorem, we found that

H1(Q; M0(W,T k)) ∼= Hom(π1(Q),Zk) = 0

and H1(Q; M0(W,T k)) mapped onto H1(Q; M(W,T k)). �

Corollary 2 (cf [?, ?]). If H1(W ;Zk) = 0 and Tn acts on W , then every principal
T k-bundle over W has a Tn lifting.

Proof. From the exact sequence arising from the spectral sequence, we have
H3(BTn,Zk) = 0 and so j is onto. �

If Q is a compact connected Lie group, then there exists a finite central covering
Q̃ of Q with

Q̃ = Tn × Q̃1 × · · · × Q̃m
for some m ≥ 0, n ≥ 0, and where each Q̃i is a simply connected simple Lie group.
If Q acts on W , then the homomorphism Q̃→ Q defines an action of Q̃ on W .

Corollary 3. If Q acts on W with H1(W ;Zk) = 0, then the action of Q̃ is Q̃-liftable
to every principal T k-bundle over W .

Proof. BQ̃ = BTn ×BQ1 × · · · ×BQm. Therefore, H3(BQ;Zk) = 0, and conse-

quently, H2(WQ̃;Zk)
j−→ H2(W ;Zk) is onto. �

Corollary 4. If Q is connected and H1(W ;Zk) = 0, then the Q-liftings, up to con-
jugation by elements of M(W,T k), are in 1−1 correspondence with Hom(π1(Q),Zk).

Proof. By the exact sequence ?? in section ??, we have H1(Q; M0(W,T k))
is isomorphic to H1(Q; M(W,T k)) because H1(W ;Zk) = 0. Moreover,
H1(Q; M0(W,T k)) was seen to be isomorphic to Hom(π1(Q),Zk). �

8-22-00 The Q-lifting theorem ?? is proved in [?] for Q a compact Lie group,
not necessarily connected. In this case, H2(Q; M(W,T k)) is not necessarily 0. So
instead of the vanishing of the entire second cohomology group, they show o(P ) = 0.
The reader is referred to their paper for a complete argument. Here, we will adopt
their idea to a case they have not treated and which gives a different perspective
to the discrete case treated in earlier chapters and subsection ??.
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Let Q be discrete and act properly on W which is paracompact, admitting
covering space theory with Q\W also paracompact.

3.3.12 Theorem. LQ(W ) = ETk(W ;WQ).

Proof. Since Q is discrete, we do not need to topologize M(W,T k) etc. Since maps
from Q to M(W,T k) will always be continuous whatever the topology on M(W,T k).
But if you wish it may be convenient to think of M(W,T k) with the CO-topology.
First, we need the image of TOP0

Tk
p−−−−→ TOP(W ) to include ϕ̃(Q). Without

this, there is no chance of a Q-lifting. We also need that P is Q-invariant.

It is clear if P has a Q-lifting, then as in Proposition ??, P is the pullback from
a bundle over WQ. Suppose P is a pullback of a bundle L over WQ. Let

i : W → e0 ×W ⊂ EQ×W,
π : EQ×W → EQ×QW, a Q-map,
π2 : EQ×W →W, projection onto the second factor.

Let j = π ◦ i. Then we have j∗(L) = i∗ ◦ π∗(L) ∼= P . Thus, π∗2(P ) = π∗(L) as
bundles over EQ×W . Then π∗(L) is a principal T k-bundle and has a Q-lifting by
subsection ??. Note, P will then be Q-invariant. By the argument in Lemma ??,
we know that TOP0

Tk(P )→ TOP(W ) has ϕ̃(Q) in its image. Therefore, we have a
pseudo-lifting for the bundle P , and so the obstruction cocycle is defined. That is,
for each α ∈ Q, there is s(α) ∈ TOPTk(P ) which covers ρ(α) = ϕ̃(α) ∈ TOP(W ).
Now π2 is a Q-map and π∗2(P ) = π∗(L). So we may assume π∗2(P ) = π∗(L).
The Q-bundle automorphism of s(α) pulls back a Q-bundle automorphism of P
to π∗2(P ) as follows. Let ((e, w), u) be an element of π∗2(P ), where u ∈ P , u
projects to w in P , and e ∈ EQ. Then, define the Q-bundle automorphism s̃(α) of
π∗2(P ) by s̃(α)((e, w), u) = (αe, αw), s(α)u). This defines the obstruction cocycle
f̃(α, β) = s̃(α)s̃(β)s̃(αβ)−1 for splitting over EQ ×W . Since the extension splits
(i.e., there is a Q-lifting on π∗(L)), the obstruction cocycle is cohomologous to 0.
That is, o(π∗2(P )) = 0. From the construction of this cocycle, it is easily seen that
f(α, β) maps to f̃(α, β) and o(π∗2(P )) = π∗2(o(P )). It remains to show π∗2 is an
isomorphism. We have two exact sequences of coefficient modules:

0 −−−−→ M(W,Zk) −−−−→ M(W,Rk) −−−−→ M0(W,T k) −−−−→ 0,

0 −−−−→ M0(W,T k) −−−−→ M(W,T k) −−−−→ H1(W,Zk) −−−−→ 0.

They give rise to two long exact sequence for the group Q. Now Hp(Q; M(W,Rk)) =
0, for p > 0, see section citeXXX . So Hp(Q; M0(W,T k)) ∼= Hp+1(Q;Zk) for
p ≥ 1. Similarly, replacing W by the homotopy equivalent EQ × W , we have
π∗2 : Hp(Q; M0(W,T k)) → Hp(Q; M0(EQ ×W,T k)) is an isomorphism as well as
Hp(Q; M0(EQ×W,T k))→ Hp+1(Q;Zk)). Now apply the 5 lemma to

→ H2(Q; M0(W,Tk)) → H2(Q; M(W,Tk)) → H1(Q;H1(W ; Zk)) →y ≈ yπ∗2 y ≈
→ H2(Q; M0(EQ×W,Tk)) → H2(Q; M(EQ×W,Tk)) → H1(Q;H1(EQ×W ; Zk)) →

and get π∗2 is an isomorphism. Therefore, o(P ) = 0 and we have a Q-lifting. �

comfortable now??
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3.4

3.4.1. Let’s work out the S1-liftings on S1 bundles over S2. There is a unique, up
to S1-equivalence, effective S1-action on S2; namely, rotating about the poles N
and S. Since S2 is simply connected, we have the exact sequence in Proposition
??:

0→ H2(BS1;Z)
`−→ H2(S2

S1 ;Z)
j−→ H2(S2;Z) −→ H3(BS1;Z)→ H3(S2

S1 ;Z).

But, H2(BS1;Z) = Z, H2(S2;Z) = Z, H3(BS1;Z) = 0, so we get

0 −→ Z −→ H2(S2
S1 ;Z)

j−→ Z −→ 0

So, H2(S2
S1 ;Z) = Z⊕ Z.

For S2, i.e., c1(P ) = +1, we can take the following S1-liftings, a different lifting
for each n ∈ Z:

z × (z1, z2) 7→ (znz1, z
n−1z2).

These are S1-liftings because of the following commutative diagram:

(z1, z2)
S1\−−−−→ z1/z2 ∈ S2 = CP1 z1z1 + z2z2 = 1

·z
y ·z

y
(znz1, z

n−1z2)
S1\−−−−→ z ·

(
z1
z2

)
rotation about the poles of S2

For L(m, 1), i.e., c1(P ) = m, we define 〈z1, z2〉 ∈ L(m, 1) by taking the orbit
space of the diagonal Zm-action on S3 given by

e2πi km × (z1, z2) 7→ (e2πi km z1, e
2πi km z2), k = 0, 1, · · · ,m− 1.

Thus we get a different S1-lifting for each n ∈ Z:

z × 〈z1, z2〉 7→ 〈znz1, z
n−1z2〉.

3.4.2 Exercise. If we take the ineffective S1-action on S2 given by z× z1
z2
7→ zp z1z2 ,

then determine the S1-liftings to the Hopf fibering S3 → S2 up to equivalence.
Which of these S1-liftings will be effective?

What about the product case, i.e., on S1 × S2? We can take

e2πiθ × (z, w) −−−−→ (z, e2πiθw)y y
(e2πiθ, w) −−−−→ e2πiθw

Then
e2πiθ × (z, w) −−−−→ (e2πinθz, e2πiθw)y y

(e2πiθ, w) −−−−→ e2πiθw
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would give us an infinite number of spaces covering the original? These are all
inequivalent S1-liftings.

3.4.3 Exercise. Points of CPn are represented by [z1 : z2 : · · · : zn+1], the homo-
geneous coordinates which is the S1-orbit of (z1, z2, · · · , zn+1) ∈ S2n+1 under the
Hopf map. We can take an S1-action, say

z × [z1 : z2 : z3 : · · · : zn+1] 7→ [znz1 : zn−1z2 : z3 : · · · : zn+1]

for definiteness. Describe the S1-liftings to S2n+1.

3.4.4 Exercise. Let Q be a connected Lie group acting properly on W and P be
a principal G-bundle over W with G connected. Let

H = Im(evw∗ : π1(Q, 1)→ π1(W,w)),

and K be the kernel of π1(Q, 1) → H. Corresponding to K, there is a unique
connected covering group QK of Q (whose fundamental group is K). Let E be
the image of evu∗ : π1(G, 1) → π1(P, u), where u 7→ w under the bundle projection
map. Then the action of G lifts to P ′, the covering space of P corresponding to
the subgroup E. This is a principal G-bundle over W̃ , the universal covering of W .
Show that the action of Q is liftable to P over W , if and only if, the action of QK
is liftable to P ′ over W̃ .
Hint: Use the following exercise and Lemma ??.

3.4.5 Exercise (cf. Lemma ??). Let G and Q be Lie groups and act on a space
Z. Suppose there exists a continuous homomorphism ϕ : Q→ Aut(G) such that

h(az) = ϕ(a)h(z), ∀a ∈ G, h ∈ Q.
(Assume that the image of Q is closed). Form the Lie group GoQ by defining

(a, h)(b, k) = (a · ϕ(h)b, hk).

Let GoQ act on Z by (a, h)·z = a(h(z)). Show that this is well defined and encodes
the actions of G and Q on Z.

3.4.6 Exercise. Let Q be discrete and act properly on W . Let π1(W ) → Q′ →
Q → 1 be the lifting sequence to W̃ , the universal covering of W . Let P be a
principal G-bundle over W , G connected and E be the image of evu∗ : π1(G, 1) →
π1(P, u). Then G lifts to P ′, the covering space of P corresponding to the subgroup
E ⊂ π1(P ). Show this is a principal G-bundle over W̃ and that the group Q is
liftable to a group of weak bundle automorphism of P over W , compatible with
the homomorphism ϕ : Q→ Aut(G) if and only if Q′ is liftable to a group of weak
bundle automorphism Q′ → Q→ Aut(G).

3.4.7 Exercise. Formulate Exercise ?? for ϕ : Q → Aut(G) and principal G-
bundle over W , where G and Q are connected and in terms of Q-liftings to weak
bundle automorphisms compatible with ϕ. Again use ??
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These 4 exercises, in some sense, reduces the problems of liftable over W to
simply connected W ’s.

Question to answer if we can

3.5

In our stuff, if we takeQ ↪→ TOP(W ) and it is a very nice subgroup of TOP(W ),
say Isom(W ), then any extension Π that we can stick into TOPG(P ) should not
be very weird. In fact, as we vary a possible embedding (or a homomorphism into
TOPG(P )) keeping ϕ× ρ : Q→ Out(G)×TOP(W ) fixed, we can really only alter
by elements of `(G)×ZG M(P,G), along the fibers. So what chance do we have in
taking some embedding of Π into TOPG(P ) and conjugating it into a nice subgroup
of TOPG(P )? Of course, we discussed this in the product case several times in the
past. But I am wondering specifically if we can say more. Let’s say for the case Π
is a spherical space-form group.

Recall that if Π is a free irreducible unitary representation, then Π ↪→ U(n+
1) ⊂ O(2n+2) and Π acts isometrically on S2n+1 and S2n+1/Π is a spherical space
form. In this case, Π ∩ Z(U(n+ 1)) = Π ∩ U(1) = Z(Π), the center of Π, and

0→ Z(Π)→ Π → Q→ 1

is exact. Then Q embeds in PSU(n + 1) = SU(n + 1)/Z(SU(n + 1)). Now this
group, PSU(n+ 1) should be a natural subgroup of Isom(CPn). In fact, either by
taking Isom(CPn) (Isom(W ), resp.) and a principal S1-bundle (principal G-bundle
P over W , resp.) over CPn, we should be able to create a subgroup of Isom(S2n+1)
and vice versa. So what I’d like to see is if we start with Q in PSU(n+ 1) and take
a Π as a central extension

0→ C → Π → Q→ 1,

C ⊂ S1 (C ⊂ G, resp), and if Π embeds in TOP(S2n+1) (TOPG(P ), resp) via a
Seifert construction, then automatically we can conjugate this embedding into our
specially constructed subgroup of Isom(S2n+1).

Do you get my point? Since our construction should be “linear” (or “nice”
model manifold, resp), we should be able to modify a construction (i. e., by conju-
gation along the fibers) so that it is nice; i.e., belongs to a group constructed from
the special structure that Q belongs to on W and the group W .

In particular, taking any Q on CPn, say it belongs to PSU(n+1) ⊂ Isom(CPn)
and 0→ C → Π → Q→ 1 an extension for which there exists Φ : Π → TOP0

G(P ),
where P is a principal S1-bundle over CPn (Π not necessarily acting freely) but
C ⊂ diagonal U(1) ⊂ U(n+1)), then can we conjugate this so that Π is conjugated
into a special subgroup of Isom(P )? This must be true. How would go about
formulating it?

Recall we can almost decide when a certain extension does lift. We have the
condition that Q is liftable to P if and only if there exists P ′ a principal T k-bundle
over WQ such that, under

H2(WQ;Zk)
j−→ H2(W ;Zk)Q
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c1(P ) = j(c1(P )).
And I am trying to work out exactly from this data, when or how we can decide

that there exist Φ : Π → TOP0
G(P ).

Even in the product case, we have not gotten a definitive statement. It would
be nice to have some stuff worked out. What are your thoughts on this mater?
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June 9, 1999, A-I

3.6

We analyze all the Z2-liftings to principal S1-bundles over S2. We could put
the first part in the book and state the others as exercises. This also could come
earlier when we first discuss the discrete case.

The exact sequence in section ?? is subtle. Let us explain the Ep,q2 spectral
sequence.

Ep,q2 = Hp(Q;Hq(W ; Zk))

where Zk is the constant sheaf Zk × W over W and Zk is .... Q acts on this
constant sheaf by

α× (η, w) = (α · η, α · w)
where α ∈ Q, η ∈ T k, w ∈ W . The action of α on T k is given by Q→ Aut(T k) =
Aut(Zk) and that on W by Q→ TOP(W ). So in this way, Hq(W ; Zk) = Hq(W ;Zk)
becomes a Q-module. In particular, H0(Q;H2(W ; Zk)) = H2(W ;Zk)Q and
H2(Q;H0(W ; Zk)) = H2(W ;Zk) where Zk is a Q-module via φ : Q→ Aut(Zk). So
the sequence in section ?? becomes

0→ H2(Q;Zk)→ H2(Q; Zk)→ H2(W ;Zk)→ H3
φ(Q;Zk)→ H3(Q; Zk).

Let’s examine a couple of cases that we understand pretty well. Let Z2 act on
S2 and P a principal S1-bundle over S2. Let Q be generated by A, the antipodal
map on S2. A is orientation-reversing on S2.

(i) Suppose A reverses the orientation of S1, i.e., Z2 → Aut(S1) is injective.
Then

H2(Z2;Z) = 0, H3(Z2;Z) = Z2, H
2(S2;Z)Z2 = Z.

To calculate H2(S2;Z)Z2 , we recall that this comes from H0(Z2; M(W,W × Z)),
where W × Z is a constant sheaf over W . Moreover, W × Z → W is a Z2-module
where A acts on W = S2 and on Aut(S1). Since H2(S2;Z) is the coefficients group
and we want the fixed subgroup under the action of Z2, we see that

H2(S2;Z) A∗−→ H2(S2;Z) −idZ−→ H2(S2;Z)

is the identity automorphism so that H2(S2;Z)Q ∼= Z. Our exact sequence then
becomes

0→ H2(Z2; Z)
j−→ H0(Z2;H2(S2;Z)) −→ Z2 −→ H3(Z2; Z).

♣
Now H2(Z2; Z) ∼= Z and either j is an isomorphism or multiplication by 2. We where is the exact se-

quence?claim that it is multiplication by 2. If not, then there is a Z2-lifting to S3 as a group
of weak bundle automorphisms. The Z2 action would have to be acting freely. Then
this will be orientation-preserving and would commute with the S1-action since
such an action is known to be equivalent to the linear action −I4 ∈ GL(4,R) on S3,
which contradicts that the involution acts non-trivially on the S1-fiber. Therefore,
the homomorphism j is multiplication by 2. Hence the Z2-action generated by A
is liftable to a group of weak bundle automorphisms on each principal S1-bundle
P over S2 whose characteristic class is even. Furthermore each such Z2-lifting is
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unique (up to conjugation by elements of M(S2, S1) because H1(Z2; M(S2, S1)) ∼=
H2(Z2;Z) = 0.

We can be specific about the lifted Z2-action which is normalizing the principal
S1-action on P . Since the lifted Z2-action is free, Z2\P is an orientable 3-manifold
which fibers as an S1-bundle over RP2. This fibering is not a principal S1-fibering
but it is the projection of the induced Seifert fibering Z2\P → RP2. Let us sum-
marize by the following

3.6.1. Observation. Let Z2 be generated by the antipodal map on S2. Then
the action is Z2-liftable to a principal S1-bundle P over S2 if and only if the
characteristic class, c1(P ) ∈ H2(S2;Z) is even. This lifted action is unique up
to equivalence by conjugation by elements of M(S2, S1). Furhtermore, the lifted
action is free and P doubly covers a non-principal S1-bundle over RP2. This bundle
projection is, of course, the resulting Seifert fibering over RP2. In terms of its Seifert
invariants, Z2\P is given by (O,n, II; 1|b), with 2b being the Chern class of P . This
bundle is isomorphic to L(4, 1) if |b| = 1, and to RP3#RP3 if b = 0, (and hence
P = S2 × S1). If |b| > 1, then, it is homeomorphic to some prism manifolds,
which is a subclass of the 3-dimensional spherical space forms. Its corresponding
description in terms of its Seifert invariants is given by

(O, o; g = 0 | − 1; (2, 1), (2, 1), (|b|, 1)), if b > 1 and
(O, o; g = 0 | 1; (2,−1), (2,−1), (|b|,−1)), if b < 0.

These homeomorphisms can be found in a paper by Threlfall, “Topologische Un-
tersuchung der Diskcontuitäts bereicher Bewegungs-gruppen des dreidimensionalen
Spherischen Raumes, II” p. 575, Math Annalen (107) 193–?.

♣
Look it up

[Calculations] On page 571, we find that (O,n; 1| b; (α1, β1)) is homeomorphic
to the prism manifold characterized by the pair of integers [p, q]. Here p ≥ 1. If
p = 0, it is not a prism manifold but corresponds to RP3#RP3. Here q = α1

and p = |α1b + β1|. But we want the action of Z2 on Pn to be free so therefore
α1 cannot biger than 1, and since normalization means that we can consider only
(1, k) otherwise.

♣
If we take (1, k), all this does is to rewrite this as (O,n, 1| b+ k)Badly written.

(no α1). But to follow the computation on page 571, we need to take α1 = 1 and
β1 = 0. Then (1, 0)’s can be ignored in a Seifert presentation.

Then we see that for our case, [p, q] becomes [|b|, 1] because q = α1 = 1, β1 = 0.
Now on p. 575, we have two families DI and DII . DII is ruled out immediately
since it only considers [|b|, 1] = [n′, µ], where µ is even in their notation. So we
need only examine DI . In Seifert-Threlfall notation, they require

[n′,m]←→ (O, o, 0| b; (2, 1), (2, 1), (n′, β3)), where m = {(b+ 1)n′ + β3}.

Our m = 1 so we need to look at 1 = (b + 1)n′ + β3. But n′ = our |b|. Now
0 < β3 < b. So we examine |b| = 1 first. Chose b = 0, β3 = 0, so we get
(0, (2, 1), (2, 1), (1, 0)) = (0, (2, 1), (2, 1)). This is the lens space L(4, 1), covered by
P2. This also can be written as (−1, (2, 1), (2, 1), (1, 1)).

More generally, fixing |b| = 1, we get

(b+ 1)(1) + β3 = 1 or β3 = 1− (b+ 1).
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Thus we get the prism manifold [|b|, 1] = [1, 1] corresponding to (O,n, II, 1 | 1)
homeomorphic to (O, o; 0 | − 1, (2, 1), (2, 1), (1, 1)), which is the same lens space
L(4, 1).

Similarly, fixing |b| > 1, we get

(b+ 1)|b|+ β3 = 1 or β3 = 1− |b|(b+ 1).

Therefore, corresponding to the prism manifold [|b|, 1], |b| > 1, we get the non-
principal S1-bundle (O,n, II; 1 | |b|) over RP2 with obstruction class |b| and cov-
ered by the principal S1-bundle whose Chern class is −2|b|, diffeomorphic to the
spherical space form (O, o, 0| − 1; (2, 1), (2, 1), (|b|, 1)). We have not been too care-
ful with orientations having taken always b ≥ 0. If we took the oppsitely oriented
bundle (O,n, II; 1‖ − |b|), then the corresponding spherical space form would also
be oppositely oriented and would be given by (O, o, 0| 1; (2,−1), (2,−1), (|b|,−1))
which, in normal form, is (O, o, 0| − 2; (2, 1), (2, 1), (|b|, |b| − 1)).

(ii) A preserves the orientation of S1, i.e., Z2 → Aut(S1) is trivial. Here

H2(Z2;Z) = Z2, H3(Z2;Z) = 0, H2(S2;Z)Z2 = 0.

Our exact sequence becomes

0→ Z2 → H2(Z2; Z) −→ 0 −→ 0 −→ H3(Z2; Z).

This says that action of A on S2 cannot be lifted to any principal S1-bundle over
S2 if c1(P ) 6= 0.

Actually we know more, in fact. Since all principal S1-bundles over S2 with
c1(P ) 6= 0, has the same rational homology as the 3-sphere then using the Lefschetz
number as in 4...

♣
We know there eixsts no f ∈ TOPS1(P ) such that f maps to 4?

idS1 × A ∈ Aut(S1)× TOP(S2). There are 2 distinct actions on S1 × S2 covering
the Z2 action on S2 generated by A. They are given by

α× (z, w) 7→ (z,Aw) and α× (z, w) 7→ (−z,Aw).

Let R be the reflection across the equator in S2. Once again consider the Z2-
liftings to principal S1-bundles P over S2. The groups are identical to the cases
above, but H2(Z2; Z) ∼= Z

j−→ H2(S2;Z)Z2 ∼= Z is different because the Borel
spaces are different.

(iii) Assume R maps into a non-trivial element of Aut(S1). We claim the j is
an onto isomorphism. Let

(z1, z2) α−→ (z1, z2), z1z1 + z2z2 = 1.

This defines involution on the 3-sphere which is orientation-preserving. Further-
more, α(zz1, zz2) = z(z1, z2) and so α is a weak bundle automorphism with respect
to the Hopf bundle over S2. The homeomorphism projects to R on the base of the
Hopf bundle and is given by α 7→ R : z1z2 7→

z1
z2
, the reflection across the equator of

S2. Therefore j is an onto isomorphism.

(iv) Now suppose R maps into the trivial element of Aut(S1). If there is a
lifted action to any P with c1(P ) 6= 0, then it is free over (S2 − equator). Over the
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equator, each fiber is mapped onto itself, either by rotation through π in each fiber,
or it is fixed. If it rotates in the fiber, the lifted action is free which can only happen
if the involution if orientation preserving, (which it is not). If the involution is fixed
on each fiber, then the fixed set for this involution is a 2-torus, which is impossible
for these principal bundles. On S2 × S1, there are exactly 2 actions given by

α× (z, w) 7→ (−z,Rw) and α× (z, w) 7→ (z,Rw).

(v) Let T be the rotation of π about the polar axis on S2. Assume a lift α of T
maps into Aut(S1) non-trivially. Therefore, α reverses the orientation on P . Now
H2(Z2;Z) = 0 and H0(Z2;H2(S2;Z)) = 0, and so the only lifting is the unique one
to S2 × S1 given by α× (z, w) 7→ (z, Tw).

(vi) Assume a lift α of T maps into Aut(S1) trivially. Therefore, α preserves
the orientation on P . From our exact sequence

0→ H2(Z2;Z) = Z2 → H2(Z2; Z)→ H2(S2;Z)Z2 = Z2 → 0,

we have H2(Z2; Z) = Z× Z2.
We may describe the liftings to P1 = S3 by

α× (z1, z2) 7→ (z1,−z2) and α× (z1, z2) 7→ (−z1, z2), where z1z2 + z2z2 = 1.

Because α commutes with the diagonal (Hopf) S1-action on S3, we can first divide
out S3 by Zn = 〈e 2πi

n 〉 given by

e
2πi
n × (z1, z2) 7→ (z1e

2πi
n , z2e

2πi
n ).

The resulting quotient space is the lens space L(n, 1) = Pn. Then α projects to Pn
and is a lift of T on S2. The actions on S1 × S2 are given by

(z, w) 7→ (−z, Tw) and (z, w) 7→ (z, Tw).

3.7. Injective Holomorphic Seifert Fiberings

We assume that G = C
k, W is a complex manifold, ρ : Q → TOP(W ) has

image in the holomorphic homeomorphisms of W , and H(W,Ck) ⊂ M(W,Ck) are
the holomorphic maps.

We also assume that the map Ck ×W → W is holomorphically trivial and so
U = HolCk(Ck ×W ) then becomes

H(W,Ck)o(GL(k,Ck)×Hol(W )),

where Hol(W ) is the group of holomorphic automorphisms ofW . Existence, unique-
ness and rigidity do not necessarily hold because we do not have holomorphic par-
titions of unity and the groups Hi(Q;H(W,Ck)) does not vanish in general.

The reader is referred to [?] where a general and comprehensive theory of
holomorphic Seifert fiberings whose universal space is a holomorphic fiber bundle
over W with fiber a complex torus or Ck is given. We shall restrict ourselves here
to a special case closely related to the classical Seifert 3-manifolds.

Let (C∗,M) be an injective, proper, holomorphic C∗ action on a complex 2-
manifold M so that the quotient space is compact. As in the case of an injective S1
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action, an injective proper C∗ action lifts to the covering space of M corresponding
to the image of the evaluation homomorphism, and yields a splitting (C∗,C∗ ×W )
where W is a simply connected complex 1-manifold, (cf. section 1.14). Therefore,
W is C, D the open unit disk, or CP1. We shall restrict ourselves to W being
the unit disk D. The orbit space Q\W is a closed Riemann surface. The action of
Q = π1(M)/Z onD is holomorphic, properly discontinuous, but not necessarily free.
Therefore, M −→ C

∗\M = Q\W is a generalization of a principal holomorphic C∗-
bundle over a Riemann surface.

From the exact sequence 1→ Z→ C
exp−→ C

∗ → 0, we obtain the exact sequence

0 −→ Z = M(W,Z) −→ H(W,C) −→ H(W,C∗) −→ 0

which gives rise to a long exact sequence of cohomology groups

· · · δ
i−1

−→ Hi(Q;Z) −→ Hi(Q;H(W,C)) −→ Hi(Q;H(W,C∗)) δi−→ · · ·
The group Q acts on the unit disk D as a cocompact Fuchsian group. That is,
ρ : Q→ Hol(D), the complex automorphisms of the unit disk. The action of Q on
λ ∈ H(W,C) is given by

αλ = λ ◦ (ρ(α))−1.

Let us compare the smooth situation with the holomorphic one. We have the
following commutative diagram of exact sequences

0 −→ H1(Q, Z) −→ H1(Q,H(W,C)) −→ H1(Q,H(W,C∗))
δ−→ H2(Q, Z) −→ H2(Q;H(W,C))y =

y y y =
y

0 −→ H1(Q, Z) −→ H1(Q, C(W,C)) −→ H1(Q, C(W,C∗)) δ−→ H2(Q, Z) −→ H2(Q; C(W,C))

(3.7–1)

For the smooth case, Hi(Q; C(W,C)) = 0, i > 0, and as we shall see,
H2(Q;H(W,C)) = 0.

For each central extension 0 → Z → Π → Q → 0 represented by [f ] ∈
H2(Q;Z), we have smooth Seifert Constructions θ : Π → DiffC(C × D) =
DiffC(C × R2). If we fix i : Z → C and ρ : Q → Diff(D), the construction
is unique up to strict equivalences (subsection ??). We have the smooth Seifert
orbifold over Q\W = Q\D with an induced injective C∗ action and therefore an
injective S1 action on θ(Π)\(C×D) (∼= R

1 × θ(Π)\(R1 ×D) = R
1 ×N3 since C∗

splits smoothly as R1 × S1). The uniqueness says that for any other embedding
θ′ : Π → DiffC(C ×D), keeping i and ρ fixed, the C∗ action on θ′(Π)\(C ×D) is
strictly smoothly equivalent to that on θ(Π)\(C×D).

For the same Π, we have the homomorphism H2(Q;Z) −→ H2(Q;H(D,C)).
The second group fortunately can be identified with the second cohomology of the
sheaf of germs of holomorphic functions over Q\D. This vanishes since Q\D is
(complex) 1-dimensional and the sheaf is coherent (i.e., locally free). This means
that [f ] ∈ H2(Q;Z) maps to 0 ∈ H2(Q;H(W,C)). But as the groups are abelian,
this becomes exactly the identity (??) , and we have θ : Π → HolC(C × W ).
Therefore, each [f ] has holomorphic realizations for each fixed i and ρ. Recall
from Theorem ??, the set of all θ : Π → HolC(C × D) with fixed i : Z → C

and ρ : Q → H(D), up to conjugation by elements of H(D,C), is in one–one
correspondence with H1(Q;H(D,C)). (This complex vector space is the same as
H1(V ;H(D,C)), the first cohomology of the sheaf of germs of holomorphic functions
where V is treated as the analytic space V = Q\D. That is, for each open U in
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V , we consider p−1(U) and holomorphic functions λ : p−1(U) → C such that
λ(ρ(α)(w)) = λ(w), w ∈ p−1(U) and p : D → Q\D is the projection. This defines
a sheaf over V ). This group is isomorphic to Cg, where g is the genus of V .

3.7.1 Theorem ([?] §13). For each smooth action (C∗,M) corresponding to the
unique strict conjugacy class θ(Π), there exists a complex g-dimensional family of
strictly holomorphically inequivalent C∗ actions each strictly smoothly equivalent to
the smooth (C∗,M).

Proof. We may interpret [f ′] ∈ H1(Q;H(W,C∗)) to represent the holomorphic
C
∗ action on θ(Π)\(C × D) up to strict C∗ equivalence. If Q were torsion free,

then Q acts freely and Q\D = V is a closed oriented surface without branch
points. The C∗ action is then free and proper yielding a principal holomorphic C∗

bundle, corresponding to a complex line bundle over V . Since Q is not assumed
to be torsion free, f ′ determines the holomorphic C∗ action (cf, [?] §5). Given two
injective C∗ actions [f ′] and [f ′′] with the same “Chern class” δ[f ′] = δ[f ′′], there
exists a [λ] ∈ H2(Q;H(D,C)) such that [f ′′] = [f ′] + [λ]. Since H1(Q;H(D,C)) is
a vector space of complex dimension g, there exists a whole g-dimensional family
of inequivalent holomorphic C∗ actions starting from [f ′] and ending with [f ′′]. �

Returning to diagram ??, define

Pic(Q\D) = H1(Q;H(D,C))/image(H1(Q;Z))
= a complex g−torus, or real 2g−torus, T 2g.

The connected component of the group H1(Q;H(D,C∗)), in the Q torsion free
case, is called the Picard group for the line bundles over Q\D. In our case,
H1(Q;H(D,C∗)) is isomorphic to T 2g ⊕ Z⊕ finite torsion.

We obtain the exact sequence

0 −→ Pic(Q\D) −→ H1(Q;H(D,C∗)) δ−→ H2(Q;Z) −→ 0,

where the middle group is the isomorphism classes of injective holomorphic C∗

actions over Q\D, δ sends such an isomorphism class to its “Chern class” and
Pic(Q\D) represents the deformations. As before, H2(Q;Z) ∼= Z⊕ Torsion.

In the discussion above, we have fixed i : Z → C and ρ : Q → Hol(D). If we
vary these choices, we don’t get anything new in the smooth case because of smooth
rigidity. That is, θ(Π) is conjugate to θ′(Π) in DiffC(C×D) where conjugation is
taken in the whole group and not just in C(D,C) as for strict equivalence. However,
in the holomorphic case, a change in ρ : Q → Hol(D) induces a much larger
deformation space than treated above. We can see this in our next example of
reduction of the universal group where instead of considering complex structures
and complex actions, we replace them by essentially equivalent Riemannian metric
structures and metric preserving S1-actions on N3, (M = N × R1).
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